

About Datadog

Datadog is the essential monitoring and security platform for cloud applications.

We bring together traces, metrics, logs, security and cost to make your

applications, infrastructure and third-party services entirely observable. These

capabilities help businesses secure their systems, avoid downtime, and ensure that

customers are getting the absolute best user experience. Thousands of customers,

from startups to Fortune 50 organizations love & trust Datadog.

UPDATED MARCH 2023

This version builds on previous editions of our Monitoring Modern Infrastructure
eBook to cover Kubernetes and AWS Lambda.

Chapter 1:
Constant Change pg. 1

Chapter 2:
Collecting the Right Data pg. 6

Chapter 3:
Alerting on What Matters pg. 14

Chapter 4:
Investigating Performance Issues pg. 20

Chapter 5:
Visualizing Metrics with Timeseries Graphs pg. 24

Chapter 6:
Visualizing Metrics with Summary Graphs pg. 34

Chapter 7:
Putting It All Together – Monitoring Kubernetes pg. 43

Chapter 8:
Putting It All Together – Monitoring AWS Lambda pg. 65

Chapter 9:
Datadog is Dynamic, Cloud-Scale Monitoring pg. 82

TABLE OF CONTENTS

CHAPTER 1: CONSTANT CHANGE

1

Chapter 1:
Constant Change

In recent years, the nature of IT infrastructure has changed dramatically. Countless
organizations have migrated away from using on-premise data storage, servers,
and services to take advantage of the agility and scalability afforded by public and
private cloud infrastructure. And for new organizations, architecting applications
for the cloud is now the default.

The cloud has effectively removed the logistical and economic barriers to accessing
production-ready infrastructure. Now, any organization or individual can harness
the same technologies that power some of the biggest companies in the world.

The shift toward the cloud has brought about a fundamental change on the
operations side as well. We are now in an era of dynamic, constantly changing
infrastructure—and this requires new monitoring tools and methods.

CHAPTER 1: CONSTANT CHANGE

2

In this book, we will outline an effective framework for monitoring modern
infrastructure and applications, however complex or dynamic they may be.
With this high-level framework in place, we will then dive into a key component
of monitoring: metric graphing and visualization. Finally, we will ground these
monitoring principles by showing how they apply to two popular infrastructure
technologies: Kubernetes and AWS Lambda.

Elastic, Dynamic, Ephemeral Infrastructure

By its nature, cloud-based infrastructure is elastic, dynamic, and constantly
changing. This presents both benefits and challenges for organizations.

Migrating to a hybrid or fully cloud infrastructure gives organizations and their
teams more flexibility in how they design their services. Developers and sysadmins
can now spin up nearly limitless cloud resources on demand, taking advantage
of a wide range of innovative technologies to transform their environments. From
cost-effective serverless and container ecosystems to highly available managed
services, modern infrastructure has benefited significantly from the cloud.

In many cases, no manual intervention is required to add or subtract new resources,
as auto-scaling allows infrastructure to expand or contract to keep pace with
changing demand. Auto-scaling is a key feature of cloud services such as Amazon’s
EC2 and container-orchestration tools such as Kubernetes.

CHAPTER 1: CONSTANT CHANGE

3

The elastic nature of modern infrastructure means that individual components are
often ephemeral and/or single-purpose. Cloud computing instances can run for just
hours or days before being destroyed. The shift toward containerization has accelerated
this trend, as containers often have short lifetimes measured in minutes or hours.

Serverless has also experienced a considerable amount of growth. With its ability to
abstract away the complexity of provisioning and managing underlying resources,
serverless enables developers to deploy more efficient, independent services.

But these technologies have also required organizations to overhaul the way they
build applications in the cloud and monitor their performance.

Pets vs. Cattle

With dynamic infrastructure, focusing on the performance of individual servers
rarely makes sense—each compute instance or container is essentially a
replaceable cog that performs some function in support of a larger service.

A useful analogy in thinking about dynamic infrastructure is ‟pets versus cattle.”
Pets are unique—they have names, and owners typically care greatly about the
health and well-being of each one. Cattle, on the other hand, are part of a herd—
they are numbered rather than named. Individual members of the herd will come
and go, and owners tend to care more about the overall health of the herd than they
do about any one animal.

In most cases, your servers, containers, and other cloud infrastructure components
can be thought of as "cattle." Therefore, when it comes to monitoring, you should
focus on the aggregate health and performance of services rather than on isolated
datapoints from your hosts. Rarely should you page an engineer in the middle of the
night for a host-level issue such as elevated CPU usage. On the other hand, if
latency for your web application starts to surge, you’ll want to take action immediately.

The Evolution of DevOps

As cloud, container, and serverless technologies have reshaped the underlying
infrastructure, software development and operations have become more
dynamic as well. The DevOps movement has evolved to accommodate these new
technologies and ensure that software is tested, deployed, and managed efficiently
and safely. DevOps practices like "shifting left" focus on identifying bugs and
performance issues earlier in the development process. Traditional deployment
strategies such as canary and blue-green have evolved to support both serverless
and container orchestration systems.

https://circleci.com/blog/canary-vs-blue-green-downtime/

CHAPTER 1: CONSTANT CHANGE

4

These trends have also prompted a change in how DevOps personnel manage
continuous integration and delivery (CI/CD) pipelines and observability.

CONTINUOUS INTEGRATION AND DELIVERY

CI/CD is a cornerstone of many DevOps approaches. Rather than orchestrating
large, infrequent releases, teams that use CI/CD push small, incremental code
changes quickly and frequently. This simplifies the process of building, testing, and
merging new commits and allows development teams to release bug fixes and new
features much faster. It also enables engineers to quickly roll back any changes that
cause unforeseen issues in production.

OBSERVABILITY

In control theory, observability is the property of being able to describe or reconstruct
the internal state of a system using its external outputs. In practice, for an organization’s
infrastructure, this means instrumenting all compute resources, apps, and
services with ‟sensors” that dependably report metrics from those components.
It also means making those metrics available on a central, easily accessible
platform where observers can aggregate them to reconstruct a full picture of the
system’s status and operation. Observability dovetails with DevOps practices, as it
represents a cultural shift away from siloed, piecemeal views into critical systems
toward a detailed, comprehensive view of an organization's environment.

Modern Approaches to Monitoring

Monitoring is the part of the DevOps toolchain that enables developers and
operations teams to build observability into their systems. In fact, modern DevOps
practices are made possible in part by monitoring tools.

Monitoring is a must now that development teams move faster than ever—some teams
release new code dozens of times per day. It provides teams with the ability to
understand and investigate complex, distributed applications where components can
fail in unpredictable ways. In most cases, the motivation for monitoring is being able
to catch and resolve performance issues before they cause problems for end users.

The core features of a modern monitoring system are single source of truth, built-
in aggregation, scalability, sophisticated alerting, and collaboration.

SINGLE SOURCE OF TRUTH

Today's monitoring systems are comprehensive; they offer the ability to collect and
analyze multiple types of telemetry data from various sources in an environment.
This creates a centralized place for teams—including development, operations,
security, product, and more—to review and collaborate on real-time performance
data, regardless of its source. As organizations deploy more ephemeral and single-
purpose resources, having a single source of truth like this is critical for tracking
activity across all services.

CHAPTER 1: CONSTANT CHANGE

5

BUILT-IN AGGREGATION

Powerful tagging and labeling schemes allow engineers to arbitrarily segment and
aggregate metrics, so they can direct their focus at the service level rather than the
host level. Remember: cattle, not pets.

SCALABILITY

Modern, dynamic monitoring systems accommodate the fact that individual hosts
come and go, and scale gracefully with expanding or contracting infrastructure.
When a new host is launched, the system should detect it and start monitoring
it automatically. Strategies like "monitoring as code" accomplish these goals by
creating a repeatable process for deploying observability solutions alongside
infrastructure. This process ensures that any change to a system is instantly and
immediately monitored.

SOPHISTICATED ALERTING

Virtually every monitoring tool can fire off an alert when a metric crosses a set
threshold. But in rapidly scaling environments, such fixed alerts require constant
updating and tuning. More advanced monitoring systems offer flexible alerts that
adapt to changing baselines, including relative change alerts as well as automated
outlier and anomaly detection.

COLLABORATION

When issues arise, a monitoring system should help engineers discover and correct
the problem as quickly as possible. That means delivering alerts through a team’s
preferred communication channels and making it easy for incident responders to
share graphs, dashboards, events, and comments.

How It’s Done

In the next chapter, we dive into the how-to of monitoring, laying out the details
of a practical monitoring framework for modern infrastructure. We’ll start with
data, which is at the core of any monitoring approach. You’ll learn techniques for
collecting, categorizing, and aggregating the various types of monitoring data
produced by your systems. You’ll also understand which data is most likely to help
you identify and resolve performance issues.

This framework comes out of our experience monitoring large-scale infrastructure
for thousands of customers, as well as for our own rapidly scaling application in the
AWS cloud. It also draws on the work of Brendan Gregg of Netflix, Rob Ewaschuk of
Google, and Baron Schwartz of VividCortex.

CHAPTER 2: COLLECTING THE RIGHT DATA

6

Chapter 2:
Collecting the
Right Data

Monitoring data comes in a variety of forms. Some systems pour out data continuously
and others only produce data when specific events occur. Some data is most useful
for identifying problems; some is primarily valuable for investigating problems.
This chapter covers which data to collect, and how to classify that data so that you can:

1. Generate automated alerts for potential problems while minimizing false
alarms

2. Quickly investigate and get to the bottom of performance issues

Whatever form your monitoring data takes, the unifying theme is this:

Collecting data is cheap, but not having it when you need it can be expensive,
so you should instrument everything, and collect all the useful data you
reasonably can.

Most monitoring data falls into one of two categories: metrics and events. Below
we'll explain each category, with examples, and describe their uses.

CHAPTER 2: COLLECTING THE RIGHT DATA

7

Metrics

Metrics capture a value pertaining to your systems at a specific point in time—for
example, the number of users currently logged in to a web application. Therefore,
metrics are usually collected at regular intervals (every 15 seconds, every minute,
etc.) to monitor a system over time.

There are two important categories of metrics in our framework: work metrics
and resource metrics. For each system in your infrastructure, consider which work
metrics and resource metrics are reasonably available, and collect them all.

WORK METRICS

Work metrics indicate the top-level health of your system by measuring its useful
output. These metrics are invaluable for surfacing real, often user-facing issues,
as we'll discuss in the following chapter. When considering your work metrics, it’s
often helpful to break them down into four subtypes:

— throughput is the amount of work the system is doing per unit time.
Throughput is usually recorded as an absolute number.

— success metrics represent the percentage of work that was executed
successfully.

— error metrics capture the number of erroneous results, usually expressed
as a rate of errors per unit time, or normalized by the throughput to yield
errors per unit of work. Error metrics are often captured separately from
success metrics when there are several potential sources of error, some of
which are more serious or actionable than others.

— performance metrics quantify how efficiently a component is doing its
work. The most common performance metric is latency, which represents
the time required to complete a unit of work. Latency can be expressed as
an average or as a percentile, such as ‟99% of requests returned within
0.1 seconds.”

CHAPTER 2: COLLECTING THE RIGHT DATA

8

SUBTYPE DESCRIPTION VALUE

THROUGHPUT REQUESTS PER SECOND 312

SUCCESS PERCENTAGE OF RESPONSES THAT ARE 2XX SINCE LAST MEASUREMENT 99.1

ERROR PERCENTAGE OF RESPONSES THAT ARE 5XX SINCE LAST MEASUREMENT 0.1

PERFORMANCE 90TH PERCENTILE RESPONSE TIME IN SECONDS 0.4

SUBTYPE DESCRIPTION VALUE

THROUGHPUT QUERIES PER SECOND 949

SUCCESS PERCENTAGE OF QUERIES SUCCESSFULLY EXECUTED SINCE LAST MEASUREMENT 100

ERROR PERCENTAGE OF QUERIES YIELDING EXCEPTIONS SINCE LAST MEASUREMENT 0

ERROR PERCENTAGE OF QUERIES RETURNING STALE DATA SINCE LAST MEASUREMENT 4.2

PERFORMANCE 90TH PERCENTILE RESPONSE TIME IN SECONDS 0.02

EXAMPLE WORK METRICS: WEB SERVER (AT TIME 2016-05-24 08:13:01 UTC)

EXAMPLE WORK METRICS: DATA STORE (AT TIME 2016-05-24 08:13:01 UTC)

Below are example work metrics of all four subtypes for two common kinds of
systems: a web server and a data store.

RESOURCE METRICS

Most components of your software infrastructure serve as a resource to other
systems. Some resources are low-level—for instance, a server’s resources include
such physical components as CPU, memory, disks, and network interfaces. But
a higher-level component, such as a database or a geolocation microservice,
can also be considered a resource if another system requires that component to
produce work.

Resource metrics are especially valuable for the investigation and diagnosis of
problems, which is the subject of chapter 4 of this book. For each resource in your
system, try to collect metrics that cover four key areas:

— utilization is the percentage of time that the resource is busy, or the
percentage of the resource’s capacity that is in use.

— saturation is a measure of the amount of requested work that the resource
cannot yet service. Saturation is often measured by queue length.

— errors represent internal errors that may not be observable in the work the
resource produces.

CHAPTER 2: COLLECTING THE RIGHT DATA

9

— availability represents the percentage of time that the resource responded
to requests. This metric is only well-defined for resources that can be
actively and regularly checked for availability.

Here are example metrics for a handful of common resource types:

RESOURCE UTILIZATION SATURATION ERRORS AVAILABILITY

DISK IO % TIME THAT WAIT QUEUE LENGTH # DEVICE ERRORS % TIME WRITABLE
 DEVICE WAS BUSY

MEMORY % OF TOTAL MEMORY SWAP USAGE N/A (NOT USUALLY N/A
 CAPACITY IN USE OBSERVABLE)

MICROSERVICE AVERAGE % TIME # ENQUEUED # INTERNAL ERRORS % TIME SERVICE
 EACH REQUEST- REQUESTS SUCH AS CAUGHT IS REACHABLE
 SERVICING THREAD EXCEPTIONS
 WAS BUSY

DATABASE AVERAGE % TIME # ENQUEUED QUERIES # INTERNAL ERRORS, % TIME
 EACH CONNECTION E.G. REPLICATION DATABASE IS
 WAS BUSY ERRORS REACHABLE

OTHER METRICS

There are a few other types of metrics that are neither work nor resource metrics,
but that nonetheless may come in handy in diagnosing causes of problems.
Common examples include counts of cache hits or database locks. When in doubt,
capture the data.

Events

In addition to metrics, which are collected more or less continuously, some
monitoring systems can also capture events: discrete, infrequent occurrences that
provide crucial context for understanding changes in your system’s behavior.
Some examples:

— Changes: Code releases, builds, and build failures

— Alerts: Notifications generated by your primary monitoring system or by
integrated third-party tools

— Scaling events: Adding or subtracting hosts or containers

An event usually carries enough information that it can be interpreted on its own,
unlike a single metric data point, which is generally only meaningful in context.
Events capture what happened, at a point in time, with optional additional
information. For example:

CHAPTER 2: COLLECTING THE RIGHT DATA

10

Events are sometimes used used to generate alerts—someone should be notified
of events such as the third example in the table above, which indicates that critical
work has failed. But more often they are used to investigate issues and correlate
across systems. Therefore, even though you may not inspect your events as often as
you look at your metrics, they are valuable data to be collected wherever it
is feasible.

Tagging

As discussed in chapter 1, modern infrastructure is constantly in flux. Auto-scaling
servers die as quickly as they’re spawned, and containers come and go with even
greater frequency. With all of these transient changes, the signal-to-noise ratio in
monitoring data can be quite low.

In most cases, you can boost the signal by shifting your monitoring away from the
base level of hosts, VMs, or containers. After all, you don’t care if a specific EC2
instance goes down, but you do care if latency for a given service, category of
customers, or geographical region goes up.

Tagging your metrics enables you to reorient your monitoring along any lines you
choose. By adding tags to your metrics you can observe and alert on metrics from
different availability zones, instance types, software versions, services, roles—or
any other level you may require.

WHAT’S A METRIC TAG?

Tags are metadata that declare all the various scopes that a datapoint belongs to.
Here’s an example:

metric name:
what?

metric value:
how much?

timestamp:
when?

 tags:
where?

metric name:
what?

metric value:
how much?

timestamp:
when?

 tags:
where?

system.net.bytes_rcvd 3 2016–03–02 15:00:00 [’availability-zone:us-east-1a’,
’file-server’,
’hostname:foo’,
’instance-type:m3.xlarge’]

Datapoint

Datapoint

system.net.bytes_rcvd 4 2016–03–02 15:00:00 [’file-server’]

WHAT HAPPENED TIME ADDITIONAL
 INFORMATION

HOTFIX F464BFE RELEASED 2016–04–15 04:13:25 UTC TIME ELAPSED: 1.2
TO PRODUCTION SECONDS

PULL REQUEST 1630 2016–04–19 14:22:20 UTC COMMITS: EA720D6
MERGED

NIGHTLY DATA ROLLUP 2016–04–27 00:03:18 UTC LINK TO LOGS OF FAILED
FAILED JOB

CHAPTER 2: COLLECTING THE RIGHT DATA

11

Tags allow you to filter and group your datapoints to generate exactly the view of
your data that matters most. They also allow you to aggregate your metrics on the
fly, without changing how the metrics are reported and collected.

FILTERING WITH SIMPLE METRIC TAGS

The following example shows a datapoint with the simple tag of file-server:

metric name:
what?

metric value:
how much?

timestamp:
when?

 tags:
where?

metric name:
what?

metric value:
how much?

timestamp:
when?

 tags:
where?

system.net.bytes_rcvd 3 2016–03–02 15:00:00 [’availability-zone:us-east-1a’,
’file-server’,
’hostname:foo’,
’instance-type:m3.xlarge’]

Datapoint

Datapoint

system.net.bytes_rcvd 4 2016–03–02 15:00:00 [’file-server’]
In

st
an

ce
 T

yp
e

Av
ail

ab
ili

ty
Zo

ne

us-east-1a

eu-west-1a

sa-east-1a

Role

database cache appserver

database
c3.large
us-east-1a

us-east-1a
b3.medium
database cache

b3.medium
us-east-1a

cache
c3.large
us-east-1a

appserver
b3.medium
us-east-1a

appserver
c3.large
us-east-1a

database
t2.small

c3.large

b3.medium

t2.small
us-east-1a

cache
t2.small
us-east-1a

appserver
t2.small
us-east-1a

Simple tags can only be used to filter datapoints: either show the datapoint with a
given tag, or do not.

CREATING NEW DIMENSIONS WITH KEY:VALUE TAGS

When you add a key:value tag to a metric, you’re actually adding a new dimension
(the key) and a new attribute in that dimension (the value). For example, a metric
with the tag instance-type:m3.xlarge declares an instance-type dimension,
and gives the metric the attribute m3.xlarge in that dimension. When using
key:value tags, the “key” selects the level of abstraction you want to consider (e.g.
instance type), and the “value” determines which datapoints belong together
(e.g. metrics from instance type m3.xlarge).

CHAPTER 2: COLLECTING THE RIGHT DATA

12

If you add other metrics with the same key, but different values, those metrics will
automatically have new attributes in that dimension (e.g. m3.medium). Once your
key:value tags are added, you can then slice and dice in any dimension.

What good data looks like

The data you collect should have four characteristics:

— Well-understood. You should be able to quickly determine how each
metric or event was captured and what it represents. During an outage you
don’t want to spend time figuring out what your data means. Keep your
metrics and events as simple as possible, use standard concepts described
above, and name them clearly.

— Granular. If you collect metrics too infrequently or average values over
long windows of time, you may lose important information about system
behavior. For example, periods of 100% resource utilization will be
obscured if they are averaged with periods of lower utilization. Collect
metrics for each system at a frequency that will not conceal problems,
without collecting so often that monitoring becomes perceptibly taxing on
the system or samples time intervals that are too short to be meaningful.

— Tagged by scope. Each of your hosts operates simultaneously in multiple
scopes, and you may want to check on the aggregate health of any of
these scopes, or their combinations. For example: how is the production
web application doing in aggregate? How about production in the AWS
region ‟us-east-1?” How about a particular combination of software
version and EC2 instance type? It is important to retain the multiple
scopes associated with your data so that you can alert on problems from
any scope, and quickly investigate outages without being limited by a
fixed hierarchy of hosts. As described above, this is especially crucial for
dynamic cloud infrastructure.

— Long-lived. If you discard data too soon, or if after a period of time your
monitoring system aggregates your metrics to reduce storage costs, then
you lose important information about what happened in the past. Retaining
your raw data for a year or more makes it much easier to know what
“normal” is, especially if your metrics have monthly, seasonal, or annual
variations.

CHAPTER 2: COLLECTING THE RIGHT DATA

13

Collect ’em all

Now that we have explored the difference between events and metrics, and the
further difference between work metrics and resource metrics, we will see in the
next chapter how those data points can be effectively harnessed to monitor your
dynamic infrastructure. But first, a brief recap of the key points in this chapter:

— Instrument everything and collect as many work metrics, resource metrics,
and events as you reasonably can.

— Collect metrics with sufficient granularity to make important spikes and
dips visible. The specific granularity depends on the system you are
measuring, the cost of measuring and a typical duration between changes
in metrics.

— To maximize the value of your data, tag metrics and events with the
appropriate scopes, and retain them at full granularity for at least a year.

CHAPTER 3: ALERTING ON WHAT MATTERS

14

Chapter 3:
Alerting on What
Matters

Automated alerts are essential to monitoring. They allow you to spot problems
anywhere in your infrastructure, so that you can rapidly identify their causes and
minimize service degradation and disruption.

An alert should communicate something specific about your systems in plain
language: “Two Cassandra nodes are down” or “90% of all web requests are taking
more than 0.5s to process and respond.” Automating alerts across as many of your
systems as possible allows you to respond quickly to issues and provide better service,
and it also saves time by freeing you from continual manual inspection of metrics.

But alerts aren’t always as effective as they could be. In particular, real problems
are often lost in a sea of noisy alarms. This chapter describes a simple approach to
effective alerting, regardless of the scale and elasticity of the systems involved.
In short:

1. Page on symptoms, rather than causes
2. Alert liberally; page judiciously

CHAPTER 3: ALERTING ON WHAT MATTERS

15

Levels of Alerting Urgency

Not all alerts carry the same degree of urgency. Some require immediate human
intervention, some require eventual human intervention, and some point to areas
where attention may be needed in the future. All alerts should, at a minimum, be
recorded in an easily accessible central location so they can be correlated with
other metrics and events.

ALERTS AS RECORDS (LOW SEVERITY)

Many alerts will not be associated with a service problem, so a human may never
even need to be aware of them. For instance, when a data store that supports a
user-facing service starts serving queries much slower than usual, but not slow
enough to make an appreciable difference in the overall service’s response time,
that should generate a low-urgency alert that is recorded in your monitoring system
for future reference or investigation but does not interrupt anyone’s work. After
all, transient issues that could be to blame, such as network congestion, often go
away on their own. But should a significant issue develop — say, if the service starts
returning a large number of timeouts — that recorded alert will provide invaluable
context for your investigation.

ALERTS AS NOTIFICATIONS (MODERATE SEVERITY)

The next tier of alerting urgency is for issues that do require intervention, but not
right away. Perhaps the data store is running low on disk space and should be
scaled out in the next several days. Sending an email or posting a notification in the
service owner’s chat room is a perfect way to deliver these alerts — both message
types are highly visible, but they won’t wake anyone in the middle of the night or
disrupt an engineer’s flow.

ALERTS AS PAGES (HIGH SEVERITY)

The most urgent alerts should receive special treatment and be escalated to a page
(as in “pager”) to urgently request human attention. Response times for your web
application, for instance, should have an internal SLA that is at least as aggressive
as your strictest customer-facing SLA. Any instance of response times exceeding
your internal SLA would warrant immediate attention, whatever the hour.

CHAPTER 3: ALERTING ON WHAT MATTERS

16

The table below maps examples of the different data types described in the previous
chapter to different levels of alerting urgency. Note that depending on severity,
a notification may be more appropriate than a page, or vice versa:

Data for Alerts, Data for Diagnostics

DATA ALERT TRIGGER

WORK METRIC: PAGE VALUE IS MUCH HIGHER OR LOWER THAN USUAL, OR THERE IS AN ANOMALOUS
THROUGHPUT RATE OF CHANGE

WORK METRIC: PAGE THE PERCENTAGE OF WORK THAT IS SUCCESSFULLY PROCESSED DROPS BELOW
SUCCESS A THRESHOLD

WORK METRIC: PAGE THE ERROR RATE EXCEEDS A THRESHOLD
ERRORS

WORK METRIC: PAGE WORK TAKES TOO LONG TO COMPLETE
PERFORMANCE (E.G., PERFORMANCE VIOLATES INTERNAL SLA)

RESOURCE METRIC: NOTIFICATION APPROACHING CRITICAL RESOURCE LIMIT
UTILIZATION (E.G., FREE DISK SPACE DROPS BELOW A THRESHOLD)

RESOURCE METRIC: RECORD NUMBER OF WAITING PROCESSES EXCEEDS A THRESHOLD
SATURATION

RESOURCE METRIC: RECORD NUMBER OF INTERNAL ERRORS DURING A FIXED PERIOD EXCEEDS A THRESHOLD
ERRORS

RESOURCE METRIC: RECORD THE RESOURCE IS UNAVAILABLE FOR A PERCENTAGE OF TIME THAT EXCEEDS
AVAILABILITY A THRESHOLD

EVENT: PAGE CRITICAL WORK THAT SHOULD HAVE BEEN COMPLETED IS REPORTED AS
WORK-RELATED INCOMPLETE OR FAILED

CHAPTER 3: ALERTING ON WHAT MATTERS

17

WHEN TO LET A SLEEPING ENGINEER LIE

Whenever you consider setting an alert, ask yourself three questions to determine
the alert’s level of urgency and how it should be handled:

1 Is this issue real?
It may seem obvious, but if the issue is not real, it usually should not
generate an alert. The examples below can trigger alerts but probably are
not symptomatic of real problems. Sending visible alerts or pages
on occurrences such as these contributes to alert fatigue and can cause
more serious issues to be overlooked:

— Metrics in a test environment are out of bounds

— A single server is doing its work very slowly, but it is part of
a cluster with fast-failover to other machines, and it reboots
periodically anyway

— Planned upgrades are causing large numbers of machines to
report as offline

 If the issue is indeed real, it should generate an alert. Even if the alert is

not linked to a notification, it should be recorded within your monitoring
system for later analysis and correlation.

2 Does this issue require attention?
If you can reasonably automate a response to an issue, you should
consider doing so. There is a very real cost to calling someone away from
work, sleep, or personal time. If the issue is real and it requires attention,
it should generate an alert that notifies someone who can investigate and
fix the problem. At minimum, the notification should be sent via email, chat
or a ticketing system so that the recipients can prioritize their response.

3 Is this issue urgent?
Not all issues are emergencies. For example, perhaps a moderately higher
than normal percentage of system responses have been very slow, or
perhaps a slightly elevated share of queries are returning stale data.
Both issues may need to be addressed soon, but not at 4:00 A.M. If, on
|the other hand, a key system stops doing its work at an acceptable
rate, an engineer should take a look immediately. If the symptom is real
and it requires attention and it is urgent, it should generate a page.

CHAPTER 3: ALERTING ON WHAT MATTERS

18

PAGE ON SYMPTOMS

Pages deserve special mention: they are extremely effective for delivering
information, but they can be quite disruptive if overused, or if they are linked to
alerts that are prone to flapping. In general, a page is the most appropriate kind
of alert when the system you are responsible for stops doing useful work with
acceptable throughput, latency, or error rates. Those are the sort of problems that
you want to know about immediately.

The fact that your system stopped doing useful work is a symptom. It is a
manifestation of an issue that may have any number of different causes. For
example: if your website has been responding very slowly for the last three
minutes, that is a symptom. Possible causes include high database latency, failed
application servers, Memcached being down, high load, and so on. Whenever
possible, build your pages around symptoms rather than causes. The distinction
between work metrics and resource metrics introduced in chapter 2 is often useful
for separating symptoms and causes: work metrics are usually associated with
symptoms and resource metrics with causes.

Paging on symptoms surfaces real, oftentimes user-facing problems, rather than
hypothetical or internal problems. Contrast paging on a symptom, such as slow
website responses, with paging on potential causes of the symptom, such as high
load on your web servers. Your users will not know or care about server load if the
website is still responding quickly, and your engineers will resent being bothered
for something that is only internally noticeable and that may revert to normal levels
without intervention.

DURABLE ALERT DEFINITIONS

Another good reason to page on symptoms is that symptom-triggered alerts tend
to be durable. This means that regardless of how underlying system architectures
may change, if the system stops doing work as well as it should, you will get an
appropriate page even without updating your alert definitions.

EXCEPTION TO THE RULE: EARLY WARNING SIGNS

It is sometimes necessary to call human attention to a small handful of metrics
even when the system is performing adequately. Early warning metrics reflect an
unacceptably high probability that serious symptoms will soon develop and require
immediate intervention.

Disk space is a classic example. Unlike running out of free memory or CPU, when
you run out of disk space, the system will not likely recover, and you probably will
have only a few seconds before your system hard stops. Of course, if you can notify
someone with plenty of lead time, then there is no need to wake anyone in the
middle of the night. Better yet, you can anticipate some situations when disk space

CHAPTER 3: ALERTING ON WHAT MATTERS

19

will run low and build automated remediation based on the data you can afford to
erase, such as logs or data that exists somewhere else.

Get Serious About Symptoms

In the next chapter we'll cover what to do once you receive an alert. But first, a
quick roundup of the key points in this chapter:

— Send a page only when symptoms of urgent problems in your system’s work
are detected, or if a critical and finite resource limit is about to be reached.

— Set up your monitoring system to record alerts whenever it detects real
issues in your infrastructure, even if those issues have not yet affected
overall performance.

CHAPTER 4: INVESTIGATING PERFORMANCE ISSUES

20

Chapter 4:
Investigating
Performance Issues

The responsibilities of a monitoring system do not end with symptom detection.
Once your monitoring system has notified you of a real symptom that requires
attention, its job is to help you diagnose the root cause. Often this is the least
structured aspect of monitoring, driven largely by hunches and guess-and-check.
This chapter describes a more directed approach that can help you to find and
correct root causes more efficiently.

CHAPTER 4: INVESTIGATING PERFORMANCE ISSUES

21

A Brief Data Refresher

As you'll recall from chapter 2, there are three main types of monitoring data that
can help you investigate the root causes of problems in your infrastructure:

— Work metrics indicate the top-level health of your system by measuring
its useful output

— Resource metrics quantify the utilization, saturation, errors, or availability
of a resource that your system depends on

— Events describe discrete, infrequent occurrences in your system such as
code changes, internal alerts, and scaling events

By and large, work metrics will surface the most serious symptoms and should
therefore generate the most serious alerts, as discussed in the previous
chapter. But the other metric types are invaluable for investigating the causes
of those symptoms.

IT’S RESOURCES ALL THE WAY DOWN

Most of the components of your infrastructure can be thought of as resources. At
the highest levels, each of your systems that produces useful work likely relies on
other systems. For instance, the Apache server in a LAMP stack relies on a MySQL
database as a resource to support its work of serving requests. One level down,
MySQL has unique resources that the database uses to do its work, such as the
finite pool of client connections. At a lower level still are the physical resources of
the server running MySQL, such as CPU, memory, and disks.

Thinking about which systems produce useful work, and which resources support
that work, can help you to efficiently get to the root of any issues that surface.
When an alert notifies you of a possible problem, the following process will help
you to approach your investigation systematically.

CHAPTER 4: INVESTIGATING PERFORMANCE ISSUES

22

1. Start at the top with work metrics
 First ask yourself, “Is there a problem? How can I characterize it?” If you

don’t describe the issue clearly at the outset, it’s easy to lose track as you
dive deeper into your systems to diagnose the issue.

 Next examine the work metrics for the highest-level system that is
exhibiting problems. These metrics will often point to the source of the
problem, or at least set the direction for your investigation. For example,
if the percentage of work that is successfully processed drops below a
set threshold, diving into error metrics, and especially the types of errors
being returned, will often help narrow the focus of your investigation.
Alternatively, if latency is high, and the throughput of work being
requested by outside systems is also very high, perhaps the system is
simply overburdened.

2. Dig into resources
 If you haven’t found the cause of the problem by inspecting top-level

work metrics, next examine the resources that the system uses—physical
resources as well as software or external services that serve as resources
to the system. Setting up dashboards for each system ahead of time,
as outlined below, enables you to quickly find and peruse metrics for
the relevant resources. Are those resources unavailable? Are they highly
utilized or saturated? If so, recurse into those resources and begin
investigating each of them at step 1.

3. Did something change?
 Next consider alerts and other events that may be correlated with your

metrics. If a code release, internal alert, or other event was registered
slightly before problems started occurring, investigate whether they may
be connected to the problem.

4. Fix it (and don’t forget it)
 Once you have determined what caused the issue, correct it. Your

investigation is complete when symptoms disappear—you can now think
about how to change the system to avoid similar problems in the future.

CHAPTER 4: INVESTIGATING PERFORMANCE ISSUES

23

BUILD DASHBOARDS BEFORE YOU NEED THEM

In an outage, every minute is crucial. To speed your investigation and keep your
focus on the task at hand, set up dashboards in advance. You may want to set up
one dashboard for your high-level application metrics, and one dashboard for
each subsystem. Each system’s dashboard should render the work metrics of that
system, along with resource metrics of the system itself and key metrics of the
subsystems it depends on. If event data is available, overlay relevant events on the
graphs for correlation analysis.

FOLLOW THE METRICS

Adhering to a standardized monitoring framework allows you to investigate
problems more systematically:

— For each system in your infrastructure, set up a dashboard ahead of time
that displays all its key metrics, with relevant events overlaid.

— Investigate causes of problems by starting with the highest-level system
that is showing symptoms, reviewing its work and resource metrics and
any associated events.

— If problematic resources are detected, apply the same investigation pattern
to the resource (and its constituent resources) until your root problem is
discovered and corrected.

We've now stepped through a high-level framework for data collection and
tagging (chapter 2), automated alerting (chapter 3), and incident response and
investigation (chapter 4). In the next chapter we'll go further into detail on
how to monitor your metrics using a variety of graphs and other visualizations.

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

24

Chapter 5:
Visualizing Metrics with
Timeseries Graphs

In order to turn your metrics into actionable insights, it's important to choose
the right visualization for your data. There is no one-size-fits-all solution: you can
see different things in the same metric with different graph types.

To help you effectively visualize your metrics, this chapter explores four different
types of timeseries graphs: line graphs, stacked area graphs, bar graphs, and heat
maps. These graphs all have time on the x-axis and metric values on the y-axis.
For each graph type, we'll explain how it works, when to use it, and when to use
something else.

But first we'll quickly touch on aggregation in timeseries graphs, which is critical for
visualizing metrics from dynamic, cloud-scale infrastructure.

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

25

Aggregation Across Space

Not all metric queries make sense broken out by host, container, or other unit of
infrastructure. So you will often need some aggregation across space to sensibly
visualize your metrics. This aggregation can take many forms: aggregating metrics
by messaging queue, by database table, by application, or by some attribute of
your hosts themselves (operating system, availability zone, hardware profile, etc.).

Aggregation across space allows you to slice and dice your infrastructure to isolate
exactly the metrics that matter most to you. It also allows you to make otherwise
noisy graphs much more readable. For instance, it is hard to make sense of a
host-level graph of web requests, but the same data is easily interpreted when the
metrics are aggregated by availability zone:

Tagging your metrics, as discussed in chapter 2, makes it easy to perform these
aggregations on the fly when you are building your graphs and dashboards.

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

26

Line Graphs

WHAT WHY EXAMPLE

THE SAME METRIC TO SPOT OUTLIERS AT A GLANCE CPU IDLE FOR EACH HOST IN A CLUSTER
REPORTED BY
DIFFERENT SCOPES

TRACKING SINGLE TO CLEARLY COMMUNICATE A KEY MEDIAN LATENCY ACROSS ALL WEB SERVERS
METRICS FROM ONE METRIC'S EVOLUTION OVER TIME
SOURCE, OR AS AN
AGGREGATE

METRICS FOR WHICH TO SPOT INDIVIDUAL DEVIATIONS DISK SPACE UTILIZATION PER
UNAGGREGATED INTO UNACCEPTABLE RANGES DATABASE NODE
VALUES FROM A
PARTICULAR SLICE OF
YOUR INFRASTRUCTURE
ARE ESPECIALLY
VALUABLE

WHEN TO USE LINE GRAPHS

Line graphs are the simplest way to translate metric data into visuals, but often
they’re used by default when a different graph would be more appropriate.
For instance, a graph of wildly fluctuating metrics from hundreds of hosts quickly
becomes harder to disentangle than steel wool.

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

27

RELATED METRICS TO SPOT CORRELATIONS AT A GLANCE LATENCY FOR DISK READS AND DISK WRITES
SHARING THE SAME ON THE SAME MACHINE
UNITS

METRICS THAT HAVE TO EASILY SPOT SERVICE DEGRADATIONS LATENCY FOR PROCESSING WEB REQUESTS
A CLEAR ACCEPTABLE
DOMAIN

WHEN TO USE SOMETHING ELSE

WHAT EXAMPLE INSTEAD USE...

HIGHLY VARIABLE CPU FROM ALL HOSTS HEAT MAPS TO MAKE NOISY DATA MORE
METRICS REPORTED INTERPRETABLE
BY A LARGE NUMBER
OF SOURCES

METRICS THAT ARE WEB REQUESTS PER SECOND OVER DOZENS AREA GRAPHS TO AGGREGATE ACROSS
MORE ACTIONABLE OF WEB SERVERS TAGGED GROUPS
AS AGGREGATES THAN
AS SEPARATE DATA
POINTS

SPARSE METRICS COUNT OF RELATIVELY RARE S3 ACCESS BAR GRAPHS TO AVOID JUMPY
 ERRORS INTERPOLATIONS

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

28

Stacked Area Graphs

Area graphs are similar to line graphs, except the metric values are represented by
two-dimensional bands rather than lines. Multiple timeseries can be summed together
simply by stacking the bands.

WHAT WHY EXAMPLE

THE SAME METRIC FROM TO CHECK BOTH THE SUM AND THE CONTRIBUTION LOAD BALANCER REQUESTS PER AVAILABILITY ZONE
DIFFERENT SCOPES, OF EACH OF ITS PARTS AT A GLANCE
STACKED

SUMMING TO SEE HOW A FINITE RESOURCE IS BEING UTILIZED CPU UTILIZATION METRICS (USER, SYSTEM, IDLE,
COMPLEMENTARY ETC.)
METRICS THAT SHARE
THE SAME UNIT

WHEN TO USE STACKED AREA GRAPHS

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

29

Bar Graphs

In a bar graph, each bar represents a metric rollup over a time interval. This feature
makes bar graphs ideal for representing counts. Unlike gauge metrics, which
represent an instantaneous value, count metrics only make sense when paired with
a time interval (e.g., 13 query errors in the past five minutes).

WHEN TO USE SOMETHING ELSE

WHAT EXAMPLE INSTEAD USE...

UNAGGREGATED METRICS THROUGHPUT METRICS ACROSS HUNDREDS OF LINE GRAPH OR SOLID-COLOR AREA GRAPH TO TRACK
FROM LARGE NUMBERS OF APP SERVERS TOTAL, AGGREGATE VALUE
HOSTS, MAKING THE
SLICES TOO THIN TO BE
MEANINGFUL

 HEAT MAPS TO TRACK HOST-LEVEL DATA

METRICS THAT CAN'T BE SYSTEM LOAD ACROSS MULTIPLE SERVERS LINE GRAPHS, OR HEAT MAPS FOR LARGE NUMBERS
ADDED SENSIBLY OF HOSTS

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

30

Bar graphs require no interpolation to connect one interval to the next, making
them especially useful for representing sparse metrics. Like area graphs, they
naturally accommodate stacking and summing of metrics.

WHAT WHY EXAMPLE

SPARSE METRICS TO CONVEY METRIC VALUES WITHOUT JUMPY OR BLOCKED TASKS IN CASSANDRA'S INTERNAL QUEUES
 MISLEADING INTERPOLATIONS

METRICS THAT REPRESENT TO CONVEY BOTH THE TOTAL COUNT AND THE FAILED JOBS, BY DATA CENTER (4-HOUR INTERVALS)
A COUNT (RATHER THAN CORRESPONDING TIME INTERVAL
A GAUGE)

WHEN TO USE BAR GRAPHS

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

31

WHAT EXAMPLE INSTEAD USE...

METRICS THAT CAN'T BE AVERAGE LATENCY PER LOAD BALANCER LINE GRAPHS TO ISOLATE TIMESERIES FROM EACH
ADDED SENSIBLY HOST

UNAGGREGATED METRICS COMPLETED TASKS ACROSS DOZENS OF CASSANDRA SOLID-COLOR BARS TO TRACK TOTAL, AGGREGATE
FROM LARGE NUMBERS OF NODES METRIC VALUE
SOURCES, MAKING THE
SLICES TOO THIN TO BE
MEANINGFUL

 HEAT MAPS TO TRACK HOST-LEVEL VALUES

WHEN TO USE SOMETHING ELSE

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

32

Heat Maps

Heat maps show the distribution of values for a metric evolving over time.
Specifically, each column represents a distribution of values during a particular
time slice. Each cell's shading corresponds to the number of entities reporting
that particular value during that particular time.

Heat maps are designed to visualize metrics from large numbers of entities,
so they are often used to graph unaggregated metrics at the individual host or
container level. Heat maps are closely related to distribution graphs, except that
heat maps show change over time, and distribution graphs are a snapshot of
a particular window of time. Distributions are covered in the following chapter.

WHAT WHY EXAMPLE

SINGLE METRIC REPORTED TO CONVEY GENERAL TRENDS AT A GLANCE WEB LATENCY PER HOST
BY A LARGE NUMBER OF
GROUPS

 TO SEE TRANSIENT VARIATIONS ACROSS MEMBERS REQUESTS RECEIVED PER HOST
 OF A GROUP

WHEN TO USE HEAT MAPS

CHAPTER 5: VISUALIZING METRICS WITH TIMESERIES GRAPHS

33

Know Your Graphs

By understanding the ideal use cases and limitations of each kind of timeseries
graph, you can extract actionable information from your metrics more quickly.

In the following chapter, we'll explore summary graphs, which are visualizations
that compress time out of view to display a summary view of your metrics.

WHAT WHY EXAMPLE

METRICS COMING FROM CPU UTILIZATION ACROSS A SMALL NUMBER OF LINE GRAPHS TO ISOLATE TIMESERIES FROM
ONLY A FEW INDIVIDUAL RDS INSTANCES EACH HOST
SOURCES

METRICS WHERE DISK UTILIZATION PER CASSANDRA COLUMN FAMILY AREA GRAPHS TO SUM VALUES ACROSS A SET OF
AGGREGATES MATTER TAGS
MORE THAN INDIVIDUAL
VALUES

WHEN TO USE SOMETHING ELSE

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

34

Chapter 6:
Visualizing Metrics with
Summary Graphs

In chapter 5, we discussed timeseries graphs — visualizations that show
infrastructure metrics evolving through time. In this post we cover summary
graphs, which are visualizations that flatten a particular span of time to provide a
summary window into your infrastructure. The summary graph types covered
in this chapter are: single-value summaries, toplists, change graphs, host maps,
and distributions.

For each graph type, we’ll explain how it works and when to use it. But first,
we’ll quickly discuss two concepts that are necessary to understand infrastructure
summary graphs: aggregation across time (which you can think of as ‟time
flattening” or ‟snapshotting”), and aggregation across space.

Aggregation Across Time

To provide a summary view of your metrics, a visualization must flatten a timeseries
into a single value by compressing the time dimension out of view. This aggregation

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

35

Max Redis latency by service

2.61 sobotka

0.72 lamar

0.01 delancie-query-alert

0.01 templeton

1h

across time can mean simply displaying the latest value returned by a metric
query, or a more complex aggregation to return a computed value over a moving
time window.

For example, instead of displaying only the latest reported value for a metric query,
you may want to display the maximum value reported by each host over the past
60 minutes to surface problematic spikes:

Aggregation Across Space

As disussed in chapter 5, you will often need some aggregation across space to
sensibly visualize your metrics. This can mean aggregating by some property
of your hosts (availability zone, instance type, operating system) or by tags applied
to your metrics (service name, messaging queue, database table, etc.).

Instead of listing peak Redis latencies at the host level as in the example pictured
above, it may be more useful to see peak latencies for each internal service that
is built on Redis. Or you could surface only the maximum value reported by any one
host in your infrastructure:

Max Redis latency by host
2.61 i-25crx5f6
0.72 i-4ad7841t
0.57 i-dmx3210b
0.45 i-99d91x39
0.36 i-53b0f0e9
0.33 i-79cd6ma0
0.29 i-9cmd5o76
0.13 i-2bdcd2fc
0.12 i-d0bnra67
0.12 i-nnd3775a

1h

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

36

Single-Value Summaries

Single-value summaries display the current value of a given metric query, with
conditional formatting (such as a green/yellow/red background) to convey whether
or not the value is in the expected range. The value displayed by a single-value
summary need not represent an instantaneous measurement. The widget can
display the latest value reported, or an aggregate computed from all query values
across the time window.

431hosts

Current number of OK hosts, prod 1h

2 AGGREGATION ACROSS TIME
Take the average value of that
sum over the past hour

1 AGGREGATION ACROSS SPACE
Sum all the hosts in our prod
environment

2.61s
Max Redis latency 1h

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

37

WHEN TO USE SINGLE-VALUE SUMMARIES

WHAT EXAMPLE EXAMPLE

WORK METRICS FROM A TO MAKE KEY METRICS IMMEDIATELY VISIBLE WEB SERVER REQUESTS PER SECOND
GIVEN SYSTEM

CRITICAL RESOURCE TO PROVIDE AN OVERVIEW OF RESOURCE STATUS HEALTHY HOSTS BEHIND LOAD BALANCER
METRICS AND HEALTH AT A GLANCE

ERROR METRICS TO QUICKLY DRAW ATTENTION TO POTENTIAL FATAL DATABASE EXCEPTIONS
 PROBLEMS

COMPUTED METRIC TO COMMUNICATE KEY TRENDS CLEARLY HOSTS IN USE VERSUS ONE WEEK AGO
CHANGES AS COMPARED
TO PREVIOUS VALUES

Toplists

Toplists are ordered lists that allow you to rank hosts, clusters, or any other
segment of your infrastructure by their metric values. Because they are so easy
to interpret, toplists are especially useful in high-level status boards.

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

38

Max Redis latency by availability zone

1.74 us-east-1a

0.7 us-east-1b

0.09 us-east-1e

1h

1 AGGREGATION ACROSS SPACE
Take the highest-latency host from
each availability zone

2 AGGREGATION ACROSS TIME
Take the max instantaneous value
from the past hour

Compared to single-value summaries, toplists have an additional layer of
aggregation across space, in that the value of the metric query is broken out by
group. Each group can be a single host or an aggregation of related hosts.

WHAT WHY EXAMPLE

WORK OR RESOURCE TO SPOT OUTLIERS, UNDERPERFORMERS, OR RESOURCE POINTS PROCESSED PER APP SERVER
METRICS TAKEN FROM OVERCONSUMERS AT A GLANCE
DIFFERENT HOSTS OR
GROUPS

CUSTOM METRICS TO CONVEY KPIS IN AN EASY-TO-READ FORMAT VERSIONS OF THE DATADOG AGENT IN USE
RETURNED AS A LIST OF (E.G. FOR STATUS BOARDS ON WALL-MOUNTED
VALUES DISPLAYS)

WHEN TO USE TOPLISTS

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

39

Change Graphs

Whereas toplists give you a summary of recent metric values, change graphs
compare a metric's current value against its value at a point in the past.

The key difference between change graphs and other visualizations is that change
graphs take two different timeframes as parameters: one for the size of the
evaluation window and one to set the lookback window.

Login failures by method

148 standard

29 oauth2

9 saml

4h

-23%

-47%

-53%

1 AGGREGATION ACROSS SPACE
Sum all the login failures for each
login method

2 AGGREGATION ACROSS TIME
Summarize the data from the past
4 hours

3 AGGREGATION ACROSS TIME #2
Summarize the data from the
same 4-hour period yesterday for
comparison

WHAT WHY EXAMPLE

CYCLIC METRICS THAT TO SEPARATE GENUINE TRENDS FROM PERIODIC DATABASE WRITE THROUGHPUT, COMPARED TO SAME
RISE AND FALL DAILY, BASELINES TIME LAST WEEK
WEEKLY, OR MONTHLY

WHEN TO USE CHANGE GRAPHS

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

40

Host Maps

Host maps are a unique way to see your entire infrastructure, or any slice of it, at
a glance. However you slice and dice your infrastructure (by availability zone, by
service name, by instance type, etc.), you will see each host in the selected group
as a hexagon, color-coded and sized by any metrics reported by those hosts.

This particular visualization type is unique to Datadog. As such, it is specifically
designed for infrastructure monitoring, in contrast to the general-purpose
visualizations described elsewhere in this chapter.

HIGH-LEVEL TO QUICKLY IDENTIFY LARGE-SCALE TRENDS TOTAL HOST COUNT, COMPARED TO SAME TIME
INFRASTRUCTURE YESTERDAY
METRICS

1 AGGREGATION ACROSS SPACE
Aggregate metric by host, and group
hosts by availability zone

2 AGGREGATION ACROSS TIME
Display the latest reported
value by each host

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

41

WHAT EXAMPLE EXAMPLE

RESOURCE UTILIZATION TO SPOT OVERLOADED COMPONENTS AT A GLANCE LOAD PER APP HOST, GROUPED BY CLUSTER
METRICS

 TO IDENTIFY RESOURCE MISALLOCATION (E.G. CPU USAGE PER EC2 INSTANCE TYPE
 WHETHER ANY INSTANCES ARE OVER-
 OR UNDERSIZED)

ERROR OR OTHER WORK TO QUICKLY IDENTIFY DEGRADED HOSTS HAPROXY 5XX ERRORS PER SERVER
METRICS

RELATED METRICS TO SEE CORRELATIONS IN A SINGLE GRAPH APP SERVER THROUGHPUT VERSUS MEMORY USED

WHEN TO USE HOST MAPS

Distributions

Distribution graphs show a histogram of a metric's value across a segment of
infrastructure. Each bar in the graph represents a range of binned values, and its
height corresponds to the number of entities reporting values in that range.

Distribution graphs are closely related to heat maps. The key difference between
the two is that heat maps show change over time, whereas distributions are a
summary of a time window. Like heat maps, distributions handily visualize large
numbers of entities reporting a particular metric, so they are often used to
graph metrics at the individual host or container level.

CHAPTER 6: VISUALIZING METRICS WITH SUMMARY GRAPHS

42

WHAT WHY EXAMPLE

SINGLE METRIC REPORTED TO CONVEY GENERAL HEALTH OR STATUS WEB LATENCY PER HOST
BY A LARGE NUMBER OF AT A GLANCE
ENTITIES

 TO SEE VARIATIONS ACROSS MEMBERS OF A GROUP UPTIME PER HOST

WHEN TO USE DISTRIBUTIONS

In Summary

As you've seen here, each of these summary graphs has unique benefits and use
cases. Understanding all the visualizations in your toolkit, and when to use each
type, will help you convey actionable information clearly in your dashboards.

In the next chapters, we'll make these monitoring concepts more concrete by
applying them to two extremely popular infrastructure technologies: Kubernetes
and AWS Lambda.

1 AGGREGATION ACROSS SPACE
Average the latency by host

2 AGGREGATION ACROSS TIME
Take the average of that latency over
the past hour

3 HISTOGRAM
Plot the distribution of hosts by
latency by bands

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

43

Chapter 7:
Putting It All Together –
Monitoring Kubernetes

Container technologies have taken the infrastructure world by storm. Ideal for
microservice architectures and environments that scale rapidly or have frequent
releases, containers have seen a rapid increase in usage in recent years. But
adopting Docker, containerd, or other container runtimes introduces significant
complexity in terms of orchestration. That’s where Kubernetes comes into play.

Kubernetes, often abbreviated as K8s, automates the scheduling, scaling, and
maintenance of containers in any infrastructure environment. First open-sourced by
Google in 2014, Kubernetes is now part of the Cloud Native Computing Foundation
(CNCF). Since its introduction, Kubernetes has been steadily gaining in popularity
across a range of industries and use cases. Datadog's research on container use
shows that almost one-half of organizations running containers were using
Kubernetes as of November 2022.

https://www.datadoghq.com/container-report/
http://kubernetes.io/
https://www.cncf.io/
https://www.datadoghq.com/container-report/#1

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

44

Kubernetes manages your containers—starting, stopping, creating, and destroying
them automatically to reflect changes in demand or resource availability.
Kubernetes automates your container infrastructure via:

— Container scheduling and auto-scaling
— Health checking and recovery
— Replication for parallelization and high availability
— Internal network management for service naming, discovery, and load

balancing
— Resource allocation and management

Kubernetes can orchestrate your containers wherever they run, which facilitates
multi-cloud deployments and migrations between infrastructure platforms. Hosted
and self-managed flavors of Kubernetes abound, from enterprise-optimized
platforms such as OpenShift and Pivotal Container Service to cloud services such as
Google Kubernetes Engine, Amazon Elastic Kubernetes Service, Azure Kubernetes
Service, and Oracle’s Container Engine for Kubernetes.

This chapter walks through monitoring Kubernetes and is broken into three parts:

1. What does Kubernetes mean for your monitoring?
2. Key Kubernetes metrics
3. Monitoring Kubernetes with Datadog

What Does Kubernetes Mean for
Your Monitoring?

Kubernetes requires you to rethink and reorient your monitoring strategies,
especially if you are accustomed to monitoring traditional, long-lived hosts such as
VMs or physical machines. Just as containers have completely transformed how we
think about running services on virtual machines, Kubernetes has changed the way
we interact with containerized applications.

The good news is that the abstraction inherent to a Kubernetes-based architecture
already provides a framework for understanding and monitoring your applications
in a dynamic container environment. With a proper monitoring approach that
dovetails with Kubernetes's built-in abstractions, you can get a comprehensive
view of application health and performance, even if the containers running those
applications are constantly shifting across hosts or scaling up and down.

https://www.datadoghq.com/blog/monitor-google-kubernetes-engine/
https://www.datadoghq.com/blog/eks-cluster-metrics/
https://www.datadoghq.com/blog/announcing-aks/
https://www.datadoghq.com/blog/announcing-aks/
https://www.datadoghq.com/blog/monitor-oracle-kubernetes-engine/
https://www.datadoghq.com/blog/the-docker-monitoring-problem/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

45

Monitoring Kubernetes differs from traditional monitoring of more static resources
in several ways:

— Tags and labels are essential for continuous visibility
— Additional layers of abstraction mean more components to monitor
— Applications are highly distributed and constantly moving

Tags and Labels Were Important…
Now They’re Essential

Just as Kubernetes uses labels to identify which pods belong to a particular service,
you can use these labels to aggregate data from individual pods and containers to
get continuous visibility into services and other Kubernetes objects.

In the pre-container world, tags and labels were important for monitoring your
infrastructure. They allowed you to group hosts and aggregate their metrics at any
level of abstraction. In particular, tags have proved extremely useful for tracking
the performance of dynamic cloud infrastructure and investigating issues that
arise there.

A container environment brings even larger numbers of objects to track, with even
shorter lifespans. The automation and scalability of Kubernetes only exaggerates
this difference. With so many moving pieces in a typical Kubernetes cluster, labels
provide the only reliable way to identify your pods and the applications within.

To make your observability data as useful as possible, you should label your pods in
a way that allows you to look at any aspect of your applications and infrastructure,
including:

— Environment (prod, staging, dev, etc.)
— App
— Team
— Version

https://www.datadoghq.com/blog/the-power-of-tagged-metrics/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

46

These user-generated labels are essential for monitoring because they are the
only way to slice and dice metrics and events across the different layers of your
Kubernetes architecture.

By default, Kubernetes also exposes basic information about pods (name,
namespace), containers (container ID, image), and nodes (instance ID,
hostname). Some monitoring tools can ingest these attributes and turn them into
tags so you can use them just like other custom Kubernetes labels.

Kubernetes also exposes some labels from Docker. But note that you cannot apply
custom Docker labels to your images or containers when using Kubernetes. You can
only apply Kubernetes labels to your pods.

Thanks to these Kubernetes labels at the pod level and Docker labels at the
container level, you can easily slice and dice along any dimension to get a logical
view of your infrastructure and applications. You can examine every layer in your
stack (namespace, replica set, pod, or container) to aggregate your metrics and
drill down for investigation.

Because they are the only way to generate an accessible, up-to-date view of your
pods and applications, labels and tags should form the basis of your monitoring
and alerting strategies. The performance metrics you track won’t be attached to
hosts; instead, they are aggregated around labels that you will use to group or filter
the pods you are interested in. Make sure that you define a logical and easy-to-
follow schema for your namespaces and labels so that the meaning of a particular
label is easily comprehensible to anyone in your organization.

https://docs.docker.com/engine/userguide/labels-custom-metadata/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

47

More Components to Monitor

In traditional, host-centric infrastructure, you had only two main layers to monitor:
your applications and the hosts running them. Then containers added a new layer
of abstraction between the host and your applications.

Now Kubernetes, which orchestrates your containers, also needs to be monitored
in order to comprehensively track your infrastructure. That makes four different
components that now need to be monitored, each with their own specificities and
challenges:

— Your hosts, even if you don’t know which containers and applications they
are actually running

— Your containers, even if you don't know where they're running
— Your containerized applications
— The Kubernetes cluster itself

Furthermore, the architecture of a Kubernetes cluster introduces a new wrinkle
when it comes to monitoring the applications running on your containers…

https://www.datadoghq.com/blog/how-to-monitor-docker-resource-metrics/
https://www.datadoghq.com/blog/how-to-monitor-docker-resource-metrics/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

48

Your Applications Are Moving!

To effectively monitor the health of your Kubernetes infrastructure, it's essential to
collect metrics and events from all your containers and pods. But to understand
what your customers or users are experiencing, you also need to monitor the
applications running in these pods. With Kubernetes, which automatically
schedules your workloads, you usually have very little control over where those
applications are running. Kubernetes does allow you to assign node affinity or anti-
affinity to particular pods, but most users will delegate such control to Kubernetes
to benefit from its automatic scheduling and resource management.

Given the rate of change in a typical Kubernetes cluster, manually configuring
checks to collect monitoring data from these applications every time a container is
started or restarted is simply not possible. So what else can you do?

A Kubernetes-aware monitoring tool with service discovery lets you make full use
of the scaling and automation built into Kubernetes, without sacrificing visibility.
Service discovery enables your monitoring system to detect any change in your
inventory of running pods and automatically reconfigure your data collection so
you can continuously monitor your containerized workloads even as they expand,
contract, and shift across hosts.

With orchestration tools like Kubernetes, service discovery mechanisms become
a must-have for monitoring. In the next part of this chapter, we'll explore the key
Kubernetes metrics that are available for monitoring.

Key Kubernetes Metrics

Kubernetes requires you to rethink your approach when it comes to monitoring.
But if you know what to observe, where to find the relevant data, and how
to aggregate and interpret that data, you can ensure that your applications
are performant and that Kubernetes is doing its job effectively. Monitoring a
Kubernetes environment requires a different approach than monitoring VM-based
workloads or even unorchestrated containers. The good news is that Kubernetes
is built around objects such as Deployments and DaemonSets, which provide
long-lived abstractions on top of dynamic container workloads. So even though
individual containers and pods may come and go, you can use these abstractions to
aggregate your data and monitor the performance of your workloads.

Additionally, Kubernetes provides a wealth of APIs for automation and cluster
management, including robust APIs for collecting performance data. Organizations
can leverage two complementary add-ons for aggregating and reporting valuable
monitoring data from your cluster: Metrics Server and kube-state-metrics.

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://en.wikipedia.org/wiki/Service_discovery

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

49

Metrics Server collects resource usage statistics from the kubelet on each node
and provides aggregated metrics through the Metrics API. Metrics Server stores
only near-real-time metrics in memory, so it is primarily valuable for spot checks
of CPU or memory usage, or for periodic querying by a full-featured monitoring
service that retains data over longer timespans.

kube-state-metrics is a service that makes cluster state information easily
consumable. Whereas Metrics Server exposes metrics on resource usage by pods
and nodes, kube-state-metrics listens to the Control Plane API server for data on
the overall status of Kubernetes objects (nodes, pods, Deployments, etc.), as well
as the resource limits and allocations for those objects. It then generates metrics
from that data which are available through the Metrics API.

We'll briefly discuss how Kubernetes generates metrics from these APIs. Then we'll
dig into the data you can collect to monitor the Kubernetes platform itself, focusing
on the following areas:

— Cluster state metrics
— Resource metrics from Kubernetes nodes and pods
— Work metrics from the Kubernetes Control Plane

We'll also touch on the value of collecting Kubernetes events.

Cluster State Metrics

The Kubernetes API server emits data about the count, health, and availability
of various Kubernetes objects, such as pods. Internal Kubernetes processes and
components use this information to track whether pods are being launched and
maintained as expected and to properly schedule new pods. These cluster state
metrics can also provide you with a high-level view of your cluster and its state.
They can surface issues with nodes or pods, alerting you to the possibility that you
need to investigate a bottleneck or scale out your cluster.

For Kubernetes objects that are deployed to your cluster, several similar but distinct
metrics are available, depending on the type of controller that manages those
objects. Two important types of controllers are:

— Deployments, which create a specified number of pods (often combined with a
Service that creates a persistent point of access to the pods in the Deployment)

— DaemonSets, which ensure that a particular pod is running on every node
(or on a specified set of nodes)

You can learn about these and other types of controllers in the Kubernetes
documentation.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

50

Node status

This cluster state metric provides a high-level overview of a node's health and
whether the scheduler can place pods on that node. It runs checks on the following
node conditions:

— OutOfDisk
— Ready (node is ready to accept pods)
— MemoryPressure (node memory is too low)
— PIDPressure (too many running processes)
— DiskPressure (remaining disk capacity is too low)
— NetworkUnavailable

Each check returns true, false, or—if the worker node hasn't communicated with
the relevant Control Plane node for a grace period (which defaults to 40 seconds)—
unknown. In particular, the Ready and NetworkUnavailable checks can alert you
to nodes that are unavailable or otherwise not usable so that you can troubleshoot
further. If a node returns true for the MemoryPressure or DiskPressure check,
the kubelet attempts to reclaim resources. This includes garbage collection and
possibly deleting pods from the node.

DESIRED VS. CURRENT PODS

While you can manually launch individual pods for small-scale experiments, in
production you will more likely use controllers to describe the desired state of your
cluster and automate the creation of pods. For example, a Deployment manifest
includes a statement of how many replicas of each pod should run. This ensures
that the Control Plane will attempt to keep that many replicas running at all times,
even if one or more nodes or pods crashes.

Alternatively, a DaemonSet launches one pod on every node in your cluster (unless
you specify a subset of nodes). This is often useful for installing a monitoring agent
or other node-level utility across your cluster.

Kubernetes provides metrics that reflect the number of desired pods (e.g.,
kube_deployment_spec_replicas) and the number of currently running pods
(e.g., kube_deployment_status_replicas). Typically, these numbers should
match unless you are in the midst of a deployment or other transitional phase, so
comparing these metrics can alert you to issues with your cluster. In particular, a
large disparity between desired and running pods can point to bottlenecks, such
as your nodes lacking the resource capacity to schedule new pods. It could also
indicate a problem with your configuration that is causing pods to fail.

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

51

AVAILABLE AND UNAVAILABLE PODS

A pod may be running but not available, meaning it is not ready and able to accept
traffic. This is normal during certain circumstances, such as when a pod is newly
launched or when a change is made and deployed to the specification of that
pod. But if you see spikes in the number of unavailable pods, or pods that are
consistently unavailable, it might indicate a problem with their configuration.

In particular, a large number of unavailable pods might point to poorly configured
readiness probes. Developers can set readiness probes to give a pod time to
perform initial startup tasks (such as loading large files) before accepting requests
so that the application or service doesn't experience problems. Checking a pod’s
logs can provide clues as to why it is stuck in a state of unavailability.

Resource Metrics

Monitoring memory, CPU, and disk usage within nodes and pods can help you
detect and troubleshoot application-level problems. But monitoring the resource
usage of Kubernetes objects is not as straightforward as monitoring a traditional
application. In Kubernetes, you still need to track the actual resource usage of your
workloads, but those statistics become more actionable when you monitor them in
the context of resource requests and limits, which govern how Kubernetes manages
finite resources and schedules workloads across the cluster.

In a manifest, you can declare a request and a limit for CPU (measured in cores)
and memory (measured in bytes) for each container running on a pod. A request is
the minimum amount of CPU or memory that a node will allocate to the container; a
limit is the maximum amount that the container will be allowed to use. The requests
and limits for an entire pod are calculated from the sum of the requests and limits
of its constituent containers.

Requests and limits do not define a pod’s actual resource utilization, but they
significantly affect how Kubernetes schedules pods on nodes. Specifically,
new pods will only be placed on a node that can meet their requests. Requests
and limits are also integral to how a kubelet manages available resources by
terminating pods (stopping the processes running on its containers) or evicting
pods (deleting them from a node), which we'll cover in more detail below.

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

52

You can read more in the Kubernetes documentation about configuring requests
and limits and how Kubernetes responds when resources run low.

Comparing resource utilization with resource requests and limits will provide a
more complete picture of whether your cluster has the capacity to run its workloads
and accommodate new ones. It’s important to keep track of resource usage at
different layers of your cluster, particularly for your nodes and for the pods running
on them.

MEMORY LIMITS PER POD VS. MEMORY UTILIZATION PER POD

When specified, a memory limit represents the maximum amount of memory that
a node will allocate to a container. If a limit is not provided in the manifest and
there is not an overall configured default, a pod could use the entirety of a node’s
available memory. Note that a node can be oversubscribed, meaning that the sum
of the limits for all pods running on a node might be greater than that node’s total
allocatable memory. This requires that the pods' defined requests are below the
limit. The node's kubelet will reduce resource allocation to individual pods if they
use more than they request as long as that allocation at least meets their requests.

Tracking pods' actual memory usage in relation to their specified limits is
particularly important because memory is a non-compressible resource. In other
words, if a pod uses more memory than its defined limit, the kubelet can't throttle
its memory allocation, so it terminates the processes running on that pod instead.
If this happens, the pod will show a status of OOMKilled.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

53

Comparing your pods' memory usage to their configured limits will alert you to
whether they are at risk of being OOM killed, as well as whether their limits make
sense. If a pod's limit is too close to its standard memory usage, the pod may get
terminated due to an unexpected spike. On the other hand, you may not want to set
a pod's limit to be significantly higher than its typical usage because that can lead
to poor scheduling decisions. For example, a pod with a memory request of 1 GiB
and a limit of 4 GiB can be scheduled on a node with 2 GiB of allocatable memory
(more than sufficient to meet its request). But if the pod suddenly needs 3 GiB of
memory, it will be killed even though it's well below its memory limit.

MEMORY UTILIZATION

Keeping an eye on memory usage at the pod and node levels can provide important
insight into your cluster's performance and its ability to successfully run workloads.
As we've seen, pods whose actual memory usage exceeds their limits will be
terminated. Additionally, if a node runs low on available memory, the kubelet flags
it as being under memory pressure and begins to reclaim resources.

In order to reclaim memory, the kubelet can evict pods, meaning it will delete these
pods from the node. The Control Plane will attempt to reschedule evicted pods on
another node with sufficient resources. If your pods' memory usage significantly
exceeds their defined requests, it can cause the kubelet to prioritize those pods
for eviction, so comparing requests with actual usage can help surface which pods
might be vulnerable to eviction.

Habitually exceeding requests could also indicate that your pods are not configured
appropriately. As mentioned above, scheduling is largely based on a pod's
request, so a pod with a bare-minimum memory request could be placed on a
node without enough resources to withstand any spikes or increases in memory
needs. Correlating and comparing each pod's actual utilization against its requests
can give insight into whether the requests and limits specified in your manifests
make sense, or if there might be some issue that is causing your pods to use more
resources than expected.

Monitoring overall memory utilization on your nodes can also help you determine
when you need to scale your cluster. If node-level usage is high, you may need to
add nodes to the cluster to share the workload.

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

54

MEMORY REQUESTS PER NODE VS. ALLOCATABLE MEMORY PER NODE

Memory requests, as discussed above, are the minimum amounts of memory a
node's kubelet will assign to a container. If a request is not provided, it will default
to whatever the value is for the container's limit (which, if also not set, could be
all memory on the node). Allocatable memory reflects the amount of memory
on a node that is available for pods. Specifically, it takes the overall capacity and
subtracts memory requirements for OS and Kubernetes system processes to ensure
they will not fight user pods for resources.

Although memory capacity is a static value, maintaining an awareness of the sum
of pod memory requests on each node versus each node's allocatable memory is
important for capacity planning. These metrics will inform you if your nodes have
enough capacity to meet the memory requirements of all current pods and whether
the Control Plane is able to schedule new ones. Kubernetes's scheduling process
uses several levels of criteria to determine if it can place a pod on a specific node.
One of the initial tests is whether a node has enough allocatable memory to satisfy
the sum of the requests of all the pods running on that node plus the new pod.

Comparing memory requests to capacity metrics can also help you troubleshoot
problems with launching and running the desired number of pods across your
cluster. If you notice that your cluster's count of current pods is significantly less
than the number of desired pods, these metrics might show you that your nodes
don't have the resource capacity to host new pods, so the Control Plane is failing to
find a node to assign desired pods to. One straightforward remedy for this issue is
to provision more nodes for your cluster.

DISK UTILIZATION

Like memory, disk space is a non-compressible resource, so if a kubelet detects
low disk space on its root volume, it can cause problems with scheduling pods. If
a node's remaining disk capacity crosses a certain resource threshold, it will get
flagged as under disk pressure. The following are the default resource thresholds
for a node to come under disk pressure:

Crossing one of these thresholds leads the kubelet to initiate garbage collection to
reclaim disk space by deleting unused images or dead containers. As a next step, if
it still needs to reclaim resources, it will start evicting pods.

DISK PRESSURE SIGNAL THRESHOLD DESCRIPTION

IMAGEFS.AVAILABLE 15% AVAILABLE DISK SPACE FOR THE imagefs FILESYSTEM, USED FOR IMAGES AND CONTAINER-
 WRITABLE LAYERS

IMAGEFS.INODESFREE 5% AVAILABLE INDEX NODES FOR THE imagefs FILESYSTEM

NODEFS.AVAILABLE 10% AVAILABLE DISK SPACE FOR THE ROOT FILESYSTEM

NODEFS.INODESFREE 5% AVAILABLE INDEX NODES FOR THE ROOT FILESYSTEM

https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/#kube-scheduler-implementation

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

55

In addition to node-level disk utilization, you should also track the usage levels
of the volumes used by your pods. This helps you stay ahead of problems at the
application or service level. Once these volumes have been provisioned and
attached to a node, the node's kubelet exposes several volume-level disk utilization
metrics, such as the volume's capacity, utilization, and available space. These
volume metrics are available from Kubernetes's Metrics API.

If a volume runs out of remaining space, any applications that depend on that
volume will likely experience errors as they try to write new data to the volume.
Setting an alert to trigger when a volume reaches 80 percent usage can give you
time to create new volumes or scale up the storage request to avoid problems.

CPU REQUESTS PER NODE VS. ALLOCATABLE CPU PER NODE

As with memory, allocatable CPU reflects the CPU resources on the node that are
available for pod scheduling, while requests are the minimum amount of CPU a
node will attempt to allocate to a pod.

As mentioned previously, Kubernetes measures CPU in cores. Tracking overall CPU
requests per node and comparing them to each node's allocatable CPU capacity
is valuable for capacity planning of a cluster and will provide insight into whether
your cluster can support more pods.

CPU LIMITS PER POD VS. CPU UTILIZATION PER POD

These metrics let you track the maximum amount of CPU that a node will allocate
to a pod compared to how much CPU it's actually using. Unlike memory, CPU is a
compressible resource. This means that if a pod's CPU usage exceeds its defined
limit, the node will throttle the amount of CPU available to that pod but allow it to
continue running. This throttling can lead to performance issues, so even if your
pods won't be terminated, keeping an eye on these metrics will help you determine
if your limits are configured properly based on the pods' actual CPU needs.

CPU UTILIZATION

Tracking the amount of CPU your pods are using compared to their configured
requests and limits, as well as CPU utilization at the node level, will give you
important insight into cluster performance. Much like a pod exceeding its CPU
limits, a lack of available CPU at the node level can lead to the node throttling the
amount of CPU allocated to each pod.

Measuring actual utilization compared to requests and limits per pod can help
determine if these are configured appropriately and your pods are requesting
enough CPU to run properly. Alternatively, consistently higher than expected CPU
usage might point to problems with the pod that need to be identified and addressed.

https://kubernetes.io/docs/concepts/storage/volumes/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

56

Control Plane Metrics

As mentioned briefly above, the Kubernetes Control Plane provides several core
services and resources for cluster management:

— The API server is the gateway through which developers and
administrators query and interact with the cluster

— Controller managers implement and track the lifecycle of the different
controllers that are deployed to the cluster (e.g., to regulate the
replication of workloads)

— Schedulers query the state of the cluster and schedule and assign
workloads to worker nodes

— etcd data stores maintain a record of the state of the cluster in a
distributed key-value store so that other components can ensure that all
worker nodes are healthy and running the desired workloads

Kubernetes exposes metrics for each of these components, which you can collect
and track to ensure that your cluster's central nervous system is healthy. Note
that in managed Kubernetes environments (such as Google Kubernetes Engine or
Amazon Elastic Kubernetes Service clusters), the Control Plane is managed by the
cloud provider, and you may not have access to all the components and metrics
listed below. Also, the availability or names of certain metrics may be different
depending on which version of Kubernetes you are using.

ETCD_SERVER_HAS_LEADER

Except during leader election events, the etcd cluster should always have a leader,
which is necessary for the operation of the key-value store. If a particular member
of an etcd cluster reports a value of 0 for etcd_server_has_leader (perhaps due
to network issues), that member of the cluster does not recognize a leader and is
unable to serve queries. Therefore, if every cluster member reports a value of 0, the
entire etcd cluster is down. A failed etcd key-value store deprives Kubernetes of
necessary information about the state of cluster objects, and prevents Kubernetes
from making any changes to cluster state. Because of its critical role in cluster
operations, etcd provides snapshot and recovery operations to mitigate the impact
of failure scenarios.

ETCD_SERVER_LEADER_CHANGES_SEEN_TOTAL

This metric tracks the number of leader transitions within the cluster. Frequent
leader changes, though not necessarily damaging on their own, can alert you to
issues with connectivity or resource limitations in the etcd cluster.

https://etcd.io/docs/v3.4.0/op-guide/failures/#leader-failure
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

57

APISERVER_REQUEST_LATENCIES_COUNT, APISERVER_REQUEST_LATENCIES_SUM

Kubernetes provides metrics on the number and duration of requests to the API
server for each combination of resource (e.g., pods, Deployments) and verb (e.g.,
GET, LIST, POST, DELETE). By dividing the summed latency for a specific type of
request by the number of requests of that type, you can compute a per-request
average latency. You can also track these metrics over time and divide their deltas
to compute a real-time average. By tracking the number and latency of specific
kinds of requests, you can see if the cluster is falling behind in executing any user-
initiated commands to create, delete, or query resources, likely due to the API
server being overwhelmed with requests.

WORKQUEUE_QUEUE_DURATION_SECONDS, WORKQUEUE_WORK_DURATION_SECONDS

These latency metrics provide insight into the performance of the controller
manager, which queues up each actionable item (such as the replication of a pod)
before it’s carried out. Each metric is tagged with the name of the relevant queue,
such as queue:daemonset or queue:node_lifecycle_controller. The metric
workqueue_queue_duration_seconds tracks how much time, in aggregate, items
in a specific queue have spent awaiting processing, whereas workqueue_work_
duration_seconds reports how much time it took to actually process those items.
If you see a latency increase in the automated actions of your controllers, you can
look at the logs for the controller manager to gather more details about the cause.

SCHEDULER_SCHEDULE_ATTEMPTS_TOTAL, END-TO-END SCHEDULING LATENCY

You can track the work of the Kubernetes scheduler by monitoring its overall
number of attempts to schedule pods on nodes, as well as the end-to-end latency
of carrying out those attempts. The metric scheduler_schedule_attempts_
total breaks out the scheduler's attempts by result (error, schedulable, or
unschedulable), so you can identify problems with matching pods to worker
nodes. An increase in unschedulable pods indicates that your cluster may lack the
resources needed to launch new pods, whereas an attempt that results in an error
status reflects an internal issue with the scheduler itself.

The end-to-end latency metrics report both how long it takes to select a node for a
particular pod, as well as how long it takes to notify the API server of the scheduling
decision so it can be applied to the cluster. If you notice a discrepancy between the
number of desired and current pods, you can dig into these latency metrics to see
if a scheduling issue is behind the lag. Note that the end-to-end latency is reported
differently depending on the version of Kubernetes you are running (pre-v1.14 or
1.14+), with different time units as well.

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

58

Kubernetes Events

Collecting events from Kubernetes and from the container engine (such as Docker)
allows you to see how pod creation, destruction, starting, or stopping affects the
performance of your infrastructure—and vice versa.

While Docker events trace container lifecycles, Kubernetes events report on pod
lifecycles and deployments. Tracking Kubernetes Pending pods and pod failures,
for example, can point you to misconfigured launch manifests or issues of resource
saturation on your nodes. That’s why you should correlate events with Kubernetes
metrics for easier investigation.

Using Datadog to Monitor Kubernetes

So far in this chapter, you’ve learned how you can use different Kubernetes
commands and add-ons to spot-check the health and resource usage of Kubernetes
cluster objects. Next, we’ll show you how you can get more comprehensive visibility
into your cluster by collecting all of your telemetry data in one place and tracking it
over time.

Datadog’s integrations with Kubernetes, Docker, containerd, etcd, Istio, and
other related technologies are designed to tackle the considerable challenges of
monitoring orchestrated containers and services. Datadog integrates with each
part of your Kubernetes cluster to provide a complete picture of health
and performance:

— The Datadog Agent’s Kubernetes integration collects metrics, events,
and logs from your cluster components, workload pods, and other
Kubernetes objects

— Integrations with container runtimes including Docker and containerd
collect container-level metrics for detailed resource breakdowns

— Wherever your Kubernetes clusters are running—including Amazon
Web Services, Google Cloud Platform, or Azure—the Datadog Agent
automatically monitors the nodes of your Kubernetes clusters

— Datadog’s Autodiscovery and 600+ built-in integrations automatically
monitor the technologies you are deploying

— APM and distributed tracing provide transaction-level insight into
applications running in your Kubernetes clusters

https://docs.datadoghq.com/integrations/kubernetes/
https://www.datadoghq.com/blog/monitor-docker-datadog/
https://www.datadoghq.com/blog/ec2-monitoring/
https://www.datadoghq.com/blog/ec2-monitoring/
https://www.datadoghq.com/blog/monitor-google-compute-engine-performance-with-datadog/
https://www.datadoghq.com/blog/monitor-azure-vms-using-datadog/
https://www.datadoghq.com/product/integrations/
https://www.datadoghq.com/apm/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

59

COLLECT, VISUALIZE, AND ALERT ON KUBERNETES METRICS IN MINUTES

The first step in setting up comprehensive Kubernetes monitoring is deploying the
Datadog Agent to the nodes of your cluster.

The Datadog Agent is open source software that collects and reports metrics,
distributed traces, and logs from each of your nodes, so you can view and monitor
your entire infrastructure in one place. In addition to collecting telemetry data from
Kubernetes, Docker, and other infrastructure technologies, the Agent automatically
collects and reports resource metrics (such as CPU, memory, and network traffic)
from your nodes, whatever the underlying infrastructure platform.

The Datadog documentation outlines multiple methods for installing the Agent,
including using the Helm package manager and installing the Agent directly onto
the nodes of your cluster. The recommended approach for the majority of use cases,
however, is to deploy the containerized version of the Agent. By deploying the
containerized Agent to your cluster as a DaemonSet, you can ensure that one copy of the
Agent runs on each host in your cluster, even as the cluster scales up and down. You
can also specify a subset of nodes that you wish to run the Agent by using nodeSelectors.

Datadog’s Agent deployment instructions for Kubernetes provide a full manifest for
deploying the containerized node-based Agent as a DaemonSet. If you wish to get
started quickly for experimentation purposes, you can follow those directions to
roll out the Agent across your cluster. To take it one step further, you can read our
guide to learn how to install the Agent on all your nodes, and deploy the specialized
Datadog Cluster Agent, which provides several additional benefits for large-scale,
production use cases.

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/containers/kubernetes/installation/?tab=helm
https://docs.datadoghq.com/agent/kubernetes/host_setup/
https://docs.datadoghq.com/agent/kubernetes/host_setup/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector
https://app.datadoghq.com/account/settings#agent/kubernetes
https://www.datadoghq.com/blog/monitoring-kubernetes-with-datadog/#install-the-datadog-agent
https://www.datadoghq.com/blog/monitoring-kubernetes-with-datadog/#install-the-datadog-agent

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

60

Dive into the Metrics

You can view the data you’re already collecting in Datadog's built-in
Kubernetes dashboard.

You may recall from earlier in this chapter that certain cluster-level metrics—
specifically, the counts of Kubernetes objects such as the count of pods desired,
currently available, and currently unavailable—are provided by an optional cluster
add-on called kube-state-metrics. If you see that this data is missing from the
dashboard, it means that you have not deployed the kube-state-metrics service. To
add these statistics to the lower-level resource metrics already being collected by
the Agent, you simply need to deploy kube-state-metrics to your cluster.

Once kube-state-metrics is up and running, your cluster state metrics will start
pouring into Datadog automatically, without any further configuration. That’s
because the Datadog Agent’s Autodiscovery functionality detects when certain
services are running and automatically enables metric collection from those
services. Since kube-state-metrics is among the integrations automatically
enabled by Autodiscovery, there’s nothing more you need to do to start collecting
your cluster state metrics in Datadog. Check out our in-depth guide for more
information about the Agent's Autodiscovery feature.

Datadog includes integrations with the individual components of your cluster’s
Control Plane, including the API server, scheduler, and etcd cluster. Once you
deploy Datadog to your cluster, metrics from these components automatically
appear so that you can easily visualize and track the overall health and workload of
your cluster. See our documentation for more information on our integrations with
the API server, controller manager, scheduler, and etcd.

https://app.datadoghq.com/screen/integration/86/kubernetes---overview
https://docs.datadoghq.com/agent/autodiscovery/auto_conf/
https://docs.datadoghq.com/agent/autodiscovery/auto_conf/
https://www.datadoghq.com/blog/monitoring-kubernetes-with-datadog/#autodiscovery
https://www.datadoghq.com/blog/monitoring-kubernetes-performance-metrics#control-plane-metrics
https://docs.datadoghq.com/integrations/kube_apiserver_metrics/
https://docs.datadoghq.com/integrations/kube_controller_manager/
https://docs.datadoghq.com/integrations/kube_scheduler/
https://docs.datadoghq.com/integrations/etcd/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

61

Monitoring Kubernetes using Tags
Datadog automatically imports metadata from Kubernetes, Docker, cloud services,
and other technologies, and creates tags that you can use to sort, filter, and
aggregate your data. Tags (and their Kubernetes equivalent, labels) are essential
for monitoring dynamic infrastructure, where host names, IP addresses, and
other identifiers are constantly in flux. With tags in Datadog, you can filter and
view your resources by Kubernetes Deployment (kube_deployment) or Service
(kube_service), or by Docker image (image_name). Datadog also automatically
pulls in tags from your cloud provider, so you can view your nodes or containers by
availability zone, instance type, and so on.

You can also import Kubernetes pod labels as tags, which captures pod-level
metadata that you define in your manifests as tags, so you can use that metadata to
filter and aggregate your telemetry data in Datadog.

The Datadog Agent automatically collects metrics from your nodes and containers.
To get even more insight into your cluster, you can also configure Datadog to collect
logs and distributed traces from your containerized applications.

Collect Logs from Your Kubernetes Clusters
Datadog can automatically collect logs from Kubernetes, Docker, and many other
technologies you may be running on your cluster. Logs can be invaluable for
troubleshooting problems, identifying errors, and giving you greater insight into
the behavior of your infrastructure and applications. Check out our documentation
to learn more about enabling log collection for your cluster.

With log collection enabled, you should start seeing logs flowing into the Log
Explorer in Datadog. You can filter by your cluster name, node names, or any
custom tag you applied earlier to drill down to the logs from only your deployment.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://docs.datadoghq.com/tagging/assigning_tags/?tab=agentv6v7#environment-variables
https://docs.datadoghq.com/integrations/#cat-log-collection
https://docs.datadoghq.com/integrations/#cat-log-collection
https://docs.datadoghq.com/containers/kubernetes/log/?tab=daemonset
https://app.datadoghq.com/logs
https://app.datadoghq.com/logs

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

62

Note that in some container environments, including Google Kubernetes Engine,
/opt is read-only, so the Agent will not be able to write to the standard path
provided above. As a workaround, you can replace /opt/datadog-agent/run with
/var/lib/datadog-agent/logs in your manifest if you run into read-only errors.

VIEW YOUR CLUSTER’S AUDIT LOGS

Kubernetes audit logs provide valuable information about requests made to your
API servers. They record data such as which users or services are requesting access
to cluster resources, and why the API server authorized or rejected those requests.
Because audit logs are written in JSON, a monitoring service like Datadog can easily
parse them for filtering and analysis. This enables you to set alerts on unusual
behavior and troubleshoot potential API authentication issues that might affect
whether users or services can access your cluster. See our documentation for steps
on setting up audit log collection with Datadog.

CATEGORIZE YOUR LOGS

Datadog automatically ingests, processes, and parses all of the logs from your
Kubernetes cluster for analysis and visualization. To get the most value from your
logs, ensure that they have a source tag and a service tag attached. For logs
coming from one of Datadog’s log integrations, the source sets the context for the
log (e.g., nginx), enabling you to pivot between infrastructure metrics and related
logs from the same system. The source tag also tells Datadog which log processing
pipeline to use to properly parse those logs in order to extract structured facets and
attributes. Likewise, the service tag (which is a core tag in Datadog APM) enables
you to pivot seamlessly from logs to application-level metrics and request traces
from the same service for rapid troubleshooting.

COLLECT TRACES FROM YOUR KUBERNETES CLUSTERS

Datadog APM traces requests to your application as they propagate across
infrastructure and service boundaries. You can then visualize the full lifespan of
these requests from end to end. APM gives you deep visibility into application
performance, database queries, dependencies between services, and other
insights that enable you to optimize and troubleshoot application performance.
Datadog APM auto-instruments a number of languages and application
frameworks; consult the documentation for supported languages and details on
how to get started with instrumenting your language or framework.

When you deploy your instrumented application, it will automatically begin sending
traces to Datadog. From the APM tab of your Datadog account, you can see a
breakdown of key performance indicators for each of your instrumented services
with information about request throughput, latency, errors, and the performance of
any service dependencies.

https://github.com/helm/charts/issues/6572
https://www.datadoghq.com/blog/monitor-kubernetes-audit-logs/
https://docs.datadoghq.com/integrations/kubernetes_audit_logs/
https://www.datadoghq.com/blog/logging-without-limits
https://www.datadoghq.com/blog/log-analytics-dashboards
https://docs.datadoghq.com/integrations/#cat-log-collection
https://docs.datadoghq.com/logs/processing/pipelines/
https://docs.datadoghq.com/logs/processing/pipelines/
https://www.datadoghq.com/apm
https://docs.datadoghq.com/tracing/setup/#language-setup
https://docs.datadoghq.com/tracing/send_traces/

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

63

You can then dive into individual traces to inspect a flame graph that breaks down
the trace into spans, each one representing an individual database query, function
call, or operation carried out as part of fulfilling the request. For each span, you can
view system metrics, application runtime metrics, error messages, and relevant
logs that pertain to that unit of work.

Datadog provides even more Kubernetes monitoring functionality beyond the
scope of this chapter. We encourage you to dive into Datadog’s Kubernetes
documentation to learn how to set up process monitoring, network performance
monitoring, and the collection of custom metrics in Kubernetes.

https://docs.datadoghq.com/agent/kubernetes/#pagetitle
https://docs.datadoghq.com/agent/kubernetes/#pagetitle

CHAPTER 7: PUTTING IT ALL TOGETHER – MONITORING KUBERNETES

64

Improved Visibility into Kubernetes Performance

In this chapter, we walked you through the key metrics you should monitor to
keep tabs on your Kubernetes cluster. And we've shown you how integrating
Kubernetes with Datadog enables you to build a more comprehensive view of your
infrastructure. Monitoring with Datadog gives you critical visibility into what’s
happening with your containerized applications. You can easily create automated
alerts on any metric, with triggers that are tailored precisely to your infrastructure
and usage patterns.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

65

Chapter 8:
Putting It All Together –
Monitoring AWS Lambda

In recent years, serverless technologies have experienced significant growth.
More than half of all organizations operating in the cloud now leverage serverless,
and AWS Lambda has become one of the most popular options available today.
Lambda is a compute service at the center of the AWS serverless platform that
deploys your serverless code as functions. Functions are event driven and can be
triggered by events such as message queues, file uploads, HTTP requests, and
cron jobs. You can trigger Lambda functions using events from other AWS services,
such as API calls from Amazon API Gateway or changes to an Amazon DynamoDB
table. When a service invokes a function for the first time, it initializes the function’s
runtime and handler method. AWS Lambda supports a range of runtimes, so you
can write functions in the programming language of your choice (e.g., Go, Python,
Node.js) and execute them within the same environment.

https://www.datadoghq.com/state-of-serverless/#1
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

66

Key AWS Lambda Metrics

Since AWS Lambda manages infrastructure resources for you, you won’t be able to
capture typical system metrics such as CPU usage. Instead, Lambda reports the
performance and efficiency of your functions as it runs them, so monitoring your
functions involves tracking function utilization, invocations, and concurrency
(including provisioned concurrency).

KEY FUNCTION PERFORMANCE AND UTILIZATION METRICS

Lambda automatically tracks the amount of time that a function is in use
(performance) and how much memory a function uses during an invocation
(utilization). Monitoring this data can help you optimize your functions and
manage costs. Function utilization metrics are included in your Amazon
CloudWatch logs, as seen in the following example log:

REPORT RequestId: f1d3fc9a-4875-4c34-b280-a5fae40abcf9 Duration:
72.51 ms Billed Duration: 100 ms Memory Size: 128 MB Max
Memory Used: 58 MB Init Duration: 2.04 ms

DURATION AND BILLED DURATION

Monitoring a function’s execution time (i.e., its duration), can help you determine
which functions can (or should) be optimized. Slow code execution could be the
result of cold starts—an initial delay in response time for an inactive Lambda
function—overly complex code, or network latency if your function relies on third-
party or other AWS services. Lambda limits a function's total execution time to 15
minutes before it will terminate it and throw a timeout error, so monitoring duration
helps you see when you are about to reach this threshold.

https://www.datadoghq.com/blog/monitor-aws-lambda-provisioned-concurrency/#how-provisioned-concurrency-works

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

67

The billed duration measures the execution time rounded up to the nearest 100
ms. Billed duration is the basis for AWS's Lambda pricing, along with the function’s
memory size, which we will talk about next.

You can compare a function’s duration with its billed duration to see if you can decrease
execution time and lower costs. For instance, let’s look at this function’s log:

REPORT RequestId: f1d3fc9a-4875-4c34-b280-a5fae40abcf9 Duration:
102.25 ms Billed Duration: 200 ms Memory Size: 128 MB Max
Memory Used: 120 MB Init Duration: 2.04 ms

The function’s duration was 102 ms, but what you will pay for is based on the 200
ms billed duration. If you notice the duration is consistent (e.g., around 102 ms),
you may be able to add more memory in order to decrease the duration and the
billed duration. For example, if you increase your function’s memory from 128 MB
to 192 MB and the duration drops to 98 ms, your billed duration would then be
100 ms. This means you would be charged less because you are in the 100 ms
block instead of the 200 ms block for billed duration. Though we used a simple
example, monitoring these two metrics is important for understanding the costs
of your functions, especially if you are managing large volumes of requests across
hundreds of functions.

MEMORY SIZE AND MAX MEMORY USED

A function's duration and billed duration are partially affected by how much
memory it has—slower execution times may be a result of not having enough
memory to process requests. Or, you may allocate more memory than your
function needs. Both scenarios affect costs, so tracking memory usage can help
you strike a balance between processing power and execution time. You can allot
memory for your function, which Lambda logs refer to as its memory size, within
AWS Lambda quotas.

You can compare a function's memory usage with its allocated memory in your
CloudWatch logs, as seen below:

REPORT RequestId: f1d3fc9a-4875-4c34-b280-a5fae40abcf9 Duration:
102.25 ms Billed Duration: 200 ms Memory Size: 512 MB Max
Memory Used: 58 MB Init Duration: 2.04 ms

You can see that the function uses (Max Memory Used) only a fraction of its
allocated memory. If this happens consistently, you may want to adjust the
function's memory size to reduce costs. On the other hand, if a function's memory
usage is consistently reaching its memory size then it doesn't have enough memory
to process incoming requests, increasing execution times.

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

68

Key Function Invocation Metrics

You can invoke a Lambda function in one of three ways: synchronously,
asynchronously, or via an event source mapping.

Synchronous services create the event, which Lambda passes directly to a function
and waits for the function to return a response before passing the result back to
the service. This is useful if you need the results of a function before moving on to
the next step in the application workflow. If an error occurs, the AWS service that
originally sent Lambda the event will retry the invocation.

Asynchronous invocation means that, when a service invokes a function, it
immediately hands off the invocation event for Lambda to add to a queue. As
soon as the service receives a response that the event was added to the queue
successfully, it moves on to the next request. Asynchronous invocations can help
decrease wait times for a service because it doesn’t need to wait for Lambda to
finish processing a request If a function returns an error—as a result of a timeout
or an issue in the function code—Lambda will retry processing the event up to
two times before discarding it. Lambda may also return events to the queue—and
throw an error—if the function doesn’t have enough concurrency to process them.

You can also use event source mapping to link an event source, such as Amazon
Kinesis or DynamoDB streams, to a Lambda function. Mappings are resources that
configure data streams or queues to serve as a trigger for a Lambda function. For
example, when you map a Kinesis data stream to a function, the Lambda runtime
will read batches of events, or records, from the shards (i.e., the sequences of
records) in a stream and then send those batches to the function for processing.
By default, if a function returns an error and cannot process a batch, it will retry the
batch until it is successful or the records in the batch expire (for a data stream).
To ensure a function doesn’t stall when processing records, you can configure the
number of retry attempts, the maximum age of a record in a batch, and the size of a
batch when you create the event source mapping.

Each of these invocation methods results in some different metrics to monitor in
addition to standard metrics that apply to all invocation types, such as invocation
count and iterator age.

https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-eventsourcemapping.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html#shard

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

69

INVOCATIONS

Monitoring invocations can help you understand application activity and how
your functions are performing overall. Anomalous changes in invocation counts
could indicate either an issue with a function's code or a connected AWS service.
For example, an outage for a function's downstream service could force multiple
retries, increasing the function's invocation count.

Additionally, if your functions are located in multiple regions, you can use the
invocation count to determine if functions are running efficiently, with minimal
latency. For example, you can quickly see which functions are invoked most
frequently in which region and evaluate if you need to move them to another region
or availability zone or modify load balancing in order to improve latency. Services
like Lambda@Edge can improve latency by automatically running your code in
regions that are closer to your customers.

ITERATOR AGE

Lambda emits the iterator age metric for stream-based invocations. The iterator
age is the time between when the last record in a batch was written to a stream
(e.g., Kinesis, DynamoDB) and when Lambda received the batch, letting you know
if the amount of data that is being written to a stream is too much for a function to
accept for processing.
There are a few scenarios that could increase the iterator age:

— a high execution duration for a function
— not enough shards in a stream
— invocation errors
— insufficient batch size

If you see the iterator age increase, it could mean the function is taking too long
to process a batch of data and your application is building a large backlog of
unprocessed events.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

70

To decrease the iterator age, you need to decrease the time it takes for a Lambda
function to process records in a batch. Long durations could result from not having
enough memory for the function to operate efficiently. You can allocate more
memory to the function or find ways to optimize your function code.

Adjusting a stream’s batch size, which determines the maximum number of records
that can be batched for processing, can also help decrease the iterator age in some
cases. If a batch consists of mostly calls to simply trigger another downstream
service, increasing the batch size allows functions to process more records in a
single invocation, increasing throughput. However, if a batch contains records that
require additional processing, then you may need to reduce the batch size to avoid
stalled shards.

Another key component for monitoring a function's iterator age is tracking
invocation errors—which you can view in Lambda’s logs. Invocation errors can
affect the time it takes for a function to process an event. If a batch of records
consistently generates an error, the function cannot continue to the next batch,
which increases the iterator age. Invocation errors may indicate issues with a
stream accessing the function (e.g., incorrect permissions) or exceeding Lambda’s
concurrent execution limit.

Monitoring Function Concurrency

A function's concurrency is a measure of how many invocations that function can
handle at one time. When a service invokes a function for the first time, the Lambda
runtime creates a new instance of the function to process an event. If the service
invokes a function while it is still processing an event, Lambda creates another
instance. This cycle continues until there are enough function instances to serve
incoming requests, or a function reaches its concurrency limit and is throttled.

By default, Lambda provides an initial pool of 1,000 concurrent executions per
region, which are shared by all of your functions in that region. You can increase
the per-region limit by submitting a request to AWS support. Lambda also requires
the per-region concurrency pool to always have at least 100 available concurrent
executions for all of your functions at all times. Monitoring concurrency along
with a function's invocation count can help you manage overprovisioned functions
and scale your functions to support the flow of application traffic. A burst of new
invocations, for instance, could throttle your function if it does not have enough
concurrency to process incoming traffic.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

71

Lambda automatically scales function instances based on the number of incoming
requests, though there is a limit on how many instances can be created during
an initial burst. Once that limit is reached (between 500 and 3,000 instances,
depending on your region), functions will scale at a rate of 500 instances per
minute until they exhaust all available concurrency. This can come from the per-
region concurrent executions limit or a function’s reserved concurrency, which is
the portion of the available pool of concurrent executions that you allocate to one
or more functions. You can configure reserved concurrency to ensure that functions
have enough concurrency to scale—or that they don’t scale out of control and hog
the concurrency pool.

Reserving concurrency for a function is useful if you know that function regularly
requires more concurrency than others. You can also reserve concurrency to ensure
that a function doesn’t process too many requests and overwhelm a downstream
service. Note that if a function uses all of its reserved concurrency, it will not access
additional concurrency from the unreserved pool. Make sure you only reserve
concurrency for your function(s) if it does not affect the performance of your other
functions, as doing so will reduce the size of the available concurrency pool.

CONCURRENT EXECUTIONS

In order to monitor concurrency, Lambda emits the concurrent executions metric.
This metric allows you to track when functions are using up all of the concurrency in
the pool.

https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

72

In the example above, you can see a spike in executions for a specific function.
As mentioned previously, you can limit concurrent executions for a function by
reserving concurrency from the common execution pool. This can be useful if you
need to ensure that a function doesn’t process too many requests simultaneously.
However, keep in mind that Lambda will throttle the function if it uses all of its
reserved concurrency.

UNRESERVED CONCURRENT EXECUTIONS

Unreserved executions are equivalent to the total number of available concurrent
executions for your account, minus any reserved concurrency. You can compare the
unreserved concurrent executions metric with the concurrent executions metric
to monitor which functions are exhausting the remaining concurrency pool during
heavier workloads.

The graphs above show a spike in unreserved concurrency and one function using
most of the available concurrency. This could be due to an upstream service
sending too many requests to the function.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

73

Monitoring Provisioned Concurrency

Since Lambda only runs your function code when needed, you may notice
additional latency (cold starts) if your functions haven’t been used in a while. This
is because Lambda needs to initialize a new container and provision packaged
dependencies for any inactive functions. Each initialization can add several
seconds of latency to function execution. Lambda will keep containers alive for
approximately 45 minutes, though that time may vary depending on your region or
if you are using VPCs.

If a function has a long startup time (e.g., it has a large number of dependencies),
requests may experience higher latency—especially if Lambda needs to initialize
new instances to support a burst of requests. You can mitigate this by using
provisioned concurrency, which automatically keeps function instances pre-
initialized so that they’ll be ready to quickly process requests.

Allocating a sufficient level of provisioned concurrency (e.g., the number of warm
instances) for a function helps reduce the likelihood that it will encounter cold
starts, which can be critical for applications that experience bursts in traffic during
specific times of the day (e.g., a food delivery application). You can manage
provisioned concurrency with Application Auto Scaling, which enables you to
automatically adjust concurrency based on a scaling schedule or utilization to
prepare for incoming traffic. Keep in mind that provisioned concurrency comes out
of your account’s regional concurrency pool and uses a different pricing model.

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#configuration-concurrency-provisioned
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

74

PROVISIONED CONCURRENCY UTILIZATION

One key metric for monitoring the efficiency of a function's provisioned concurrency
is provisioned concurrency utilization. A function that is using up all of its available
provisioned concurrency—its utilization threshold—may need additional concurrency.
Or, if utilization is consistently low, you may have overprovisioned a function. You
can disable or reduce provisioned concurrency for that function to manage costs.

Using Datadog to Monitor AWS Lambda

Serverless applications introduce a new set of challenges for monitoring. You
should be mindful of how incoming requests and other services interact with your
functions, as well as how resilient your functions are to high demand or errors.
For example, an influx of new requests could cause AWS to throttle your function
if it does not have enough concurrency to process that traffic. Or, errors from an
upstream service could stop your function code from executing.

To effectively monitor serverless applications, you need visibility into your entire
serverless architecture so that you can understand how your functions and other
AWS services are interoperating. Datadog provides full visibility into the state of
your serverless applications in one place. You can identify service bottlenecks with
end-to-end tracing, track custom metrics, correlate data, and get insight into
function performance.

At a high level, Datadog provides a built-in AWS integration that collects
CloudWatch data from all of your AWS services, including those used for your
serverless applications (e.g., Lambda, Fargate, API Gateway, Step Functions). For
deeper insights into your serverless functions, Datadog uses a dedicated AWS
Lambda Extension to submit telemetry data directly from your Lambda functions.
The Lambda Extension generates enhanced metrics, such as billed duration,
timeouts, and estimated cost, from your AWS function logs at a higher granularity
than standard CloudWatch metrics. This capability gives you real-time visibility into
function performance.

https://docs.datadoghq.com/integrations/amazon_web_services/?tab=automaticcloudformation#overview
https://aws.amazon.com/serverless/
https://docs.datadoghq.com/serverless/libraries_integrations/extension/
https://docs.datadoghq.com/serverless/libraries_integrations/extension/
https://docs.datadoghq.com/serverless/enhanced_lambda_metrics/

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

75

The Extension can also send custom metrics (synchronously or asynchronously),
giving you additional insights into use cases that are unique to your application
workflows, such as a user logging into your application, purchasing an item, or
updating a user profile. Sending metrics asynchronously is recommended because
it does not add any overhead to your code, making it an ideal solution for functions
that power performance-critical tasks for your applications.

If you only need to collect Lambda logs, you can use Datadog's dedicated Lambda
Layer and Forwarder. Datadog’s Lambda Layer runs as a part of each function’s
runtime to automatically forward CloudWatch logs to the Datadog Forwarder,
which then pushes them to Datadog. Deploying the Forwarder via CloudFormation
is recommended as AWS will then automatically create the Lambda function with
the appropriate role, add Datadog’s Lambda Layer, and create relevant tags like
functionname, region, and account_id, which you can then use in Datadog to
search your logs.

Because the Forwarder is a Lambda function, it relies on triggers to execute.
You can let Datadog automatically set these triggers up for you, or you can
manually set them up to forward data as soon as they are added to S3 buckets or
CloudWatch log groups. Once configured, Datadog’s Lambda Forwarder will begin
sending logs from Lambda (and any other AWS services you’ve configured) to your
Datadog account.

VISUALIZE LAMBDA PERFORMANCE

Datadog provides out-of-the-box integration dashboards for your AWS
infrastructure, including dashboards for both standard and enhanced Lambda
metrics, giving you a high-level overview of how your serverless applications
are performing.

https://www.datadoghq.com/blog/datadog-lambda-layer/#custom-metrics-for-serverless-monitoring
https://www.datadoghq.com/blog/datadog-lambda-layer/
https://www.datadoghq.com/blog/datadog-lambda-layer/
https://docs.datadoghq.com/serverless/forwarder
https://docs.datadoghq.com/logs/guide/forwarder/#installation
https://docs.datadoghq.com/logs/guide/forwarder/#manual
https://docs.datadoghq.com/integrations/amazon_web_services/?tab=automaticcloudformation#overview

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

76

For example, with the dashboard above, you can easily track cold starts, errors,
and memory usage for all of your Lambda functions. You can customize your
dashboards to include function logs and trace data, as well as metrics from any of
your other services for easy correlation.

You can also use Datadog's Service Map to visualize all your serverless components
in one place. This information helps you quickly understand the flow of traffic across
upstream and downstream dependencies in your environment.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

77

SEARCH AND ANALYZE SERVERLESS LOGS IN ONE PLACE

Lambda functions generate a large volume of logs, making it difficult to pinpoint
issues during an incident or simply to monitor the current state of your functions.
You can use Datadog's Log Patterns to help you surface interesting trends in
your logs.

For example, if you notice a spike in Lambda errors on your dashboard, you can use
Log Patterns to quickly search for the most common types of errors. In the example
below, you can see a cluster of function logs recording an AccessDeniedException
permissions error. The logs provide a stack trace so you can troubleshoot further.

EXPLORE TRACE DATA USING DATADOG APM

Datadog's AWS Lambda Extension automatically propagates trace headers across
services, providing end-to-end distributed tracing for your serverless applications.
Datadog APM provides tracing libraries that you can use with the extension in
order to natively trace request traffic across your serverless architecture. Traces
are sent asynchronously, so they don’t add any latency overhead to your serverless
applications.

Datadog also provides integrations for other services you may use with your
serverless applications, such as AWS Fargate, Amazon API Gateway, Amazon
SNS, and Amazon SQS. This ensures that you get visibility into every layer of your
serverless architecture. With these integrations enabled, you can drill down
to specific functions that are generating errors or cold starts to optimize their
performance. AWS charges based on the time it takes for a function to execute,
how much memory is allocated to each function, and the number of requests for
your function. This means that your costs could quickly increase if, for instance,
a high-volume function makes a call to an API Gateway service experiencing
network outages and has to wait for a response.

https://docs.datadoghq.com/tracing/
https://docs.datadoghq.com/integrations/#cat-aws

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

78

With tracing, you can map upstream and downstream dependencies such as
API Gateway and trace requests across your entire stack to pinpoint any latency
bottlenecks. The extension also allows you to analyze serverless logs to quickly
identify the types of errors your functions generate.

To start analyzing trace data from your serverless functions, you can use Datadog’s
Serverless view. This view gives a comprehensive look at all of your functions and
includes key metrics such as invocation count and memory usage. You can search
for a specific function or view performance metrics across all your functions.
You can also sort your functions in the Serverless view by specific metrics to help
surface functions that use the most memory, or that are invoked the most, as seen
in the example below.

When you click on a function, you will see all of its associated traces and logs, as
well as a detailed breakdown of information for each invocation such as duration,
related error messages, and whether the function experienced a cold start during
the invocation.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

79

API latency and cold starts are two common issues with serverless functions, both
of which can significantly increase a function's execution time. Cold starts typically
occur when functions scale behind the scenes to handle more requests. API latency
could be a result of network or other service outages. Datadog enables you to
proactively monitor latency and cold starts for all your functions.

For example, you can create an anomaly alert to notify you when a function
experiences unusual latency. From the triggered alert, you can pivot to traces and
logs to determine if the latency was caused by cold starts or degradation in an API
service dependency. Datadog also automatically detects when cold starts occur
and applies a cold_start tag to your traces, so you can easily surface functions
that are experiencing cold starts to troubleshoot further.

https://www.datadoghq.com/blog/introducing-anomaly-detection-datadog/

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

80

If a function's increased execution time is a result of too many cold starts, you can
configure Lambda to reduce initialization latency by using provisioned concurrency.
Latency from an API service, on the other hand, may be a result of cross-region
calls. In that case, you may need to colocate your application resources into the
same AWS region.

ALERT ON CRITICAL AWS LAMBDA METRICS

Monitoring Lambda enables you to visualize trends and identify issues during
critical outages, but it’s easy to overlook an issue when you are monitoring a large
volume of data in complex infrastructures. In order to ensure that you are aware
of critical issues affecting your applications, you can create alerts to get notified
about key issues detected in your Lambda metrics, logs, or traces.

Datadog provides a list of built-in alerts you can enable from the Serverless view to
automatically notify you of critical performance issues with minimal configuration,
such as a sudden increase in cold starts or out-of-memory errors.

There are also several alert types that you can use for creating custom alerts for
your specific use case, so you can be notified about only the issues you care about.
For example, you can create an alert to notify you if a function has been throttled
frequently over a specific period of time. If you configure the alert to automatically
trigger separate notifications per affected function, this saves you from creating
duplicate alerts and enables you to get continuous, scalable coverage of your
environment, no matter how many functions you’re running. Throttles occur when
there is not enough capacity for a function, either because available concurrency is
used up or because requests are coming in faster than the function can scale.

CHAPTER 8: PUTTING IT ALL TOGETHER – MONITORING AWS LAMBDA

81

Full Visibility into Your Serverless Ecosystem

In this chapter, we looked at some key metrics for monitoring your serverless
applications as well as how to troubleshoot common serverless problems. AWS
provides a comprehensive suite of tools that enable you to focus more on building
scalable services and less on provisioning or managing infrastructure resources.
Datadog offers deep visibility into these serverless applications, enabling you
to easily collect observability data through built-in service integrations and a
dedicated Lambda extension. This enables you to visualize your serverless metrics
with integration dashboards, sift through logs with Datadog's Log Explorer, and
analyze distributed request traces with Datadog APM.

CHAPTER 9: DATADOG IS DYNAMIC, CLOUD-SCALE MONITORING

82

Monitoring
Modern
Infrastructure

“Measure what is measurable,
and make measurable what is not so.”
—Galileo

Chapter 9:
Datadog Is Dynamic,
Cloud-Scale Monitoring

In the preceding chapters we demonstrated how Datadog can help you track the
health and performance of Amazon Elastic Load Balancing, Docker, and all their
associated infrastructure. Whatever technologies you use, Datadog enables you to
view and analyze metrics and events from across your infrastructure.

Datadog was built to meet the unique needs of modern, cloud-scale infrastructure:

— Comprehensive monitoring. Out of the box, Datadog collects monitoring
data from more than 150 popular technologies. The Datadog Agent also
includes a lightweight metrics aggregation server that can collect custom
metrics from virtually any application.

— Flexible aggregation. Datadog’s native support for tagging allows you to
aggregate metrics and events on the fly to generate the views that matter
most. Tagging allows you to monitor services rather than hosts so you
can focus on the performance metrics that directly impact your users and
your business.

CHAPTER 9: DATADOG IS DYNAMIC, CLOUD-SCALE MONITORING

83

— Effortless scaling. Datadog scales automatically with your infrastructure,
whether you have tens, hundreds, or thousands of hosts. Datadog auto-
enrolls new hosts and containers as they come online, and with service
discovery you can continuously monitor your containerized services
wherever they run.

— Sophisticated alerting. Virtually any type of monitoring data can be used
to trigger a Datadog alert. Datadog can alert on fixed or dynamic metric
thresholds, outliers, events, status checks, and more.

— Collaboration baked in. Datadog helps teams stay on the same page with
easily sharable dashboards, graphs, and annotated snapshots. Seamless
integrations with industry-leading collaboration tools such as PagerDuty,
Slack, and HipChat make conversations around monitoring data as
frictionless as possible.

If you are ready to apply the monitoring and visualization principles you’ve learned
in this book, you can sign up for a full-featured Datadog trial at www.datadog.com

Above all, we hope that you find the information in this book to be instructive as
you set out to implement monitoring for your infrastructure, or to improve on
existing practices. We have found the frameworks outlined in these chapters to
be extremely valuable in monitoring and scaling our own dynamic infrastructure,
and we hope that you find them equally useful. Please get in touch with us by
email (info@datadoghq.com) or on Twitter (@datadoghq) if you have questions or
comments about this book or about Datadog.

Happy monitoring!

http://www.datadog.com

	About Datadog

